Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Keough
2
68 kgPozdnyakov
3
67 kgSellier
4
68 kgAït El Abdia
6
66 kgMager
7
60 kgPutt
9
75 kgShumov
10
65 kgAsadov
11
77 kgRumac
13
71 kgTybor
15
72 kgJourniaux
17
63 kgJones
18
64 kgLahsaini
21
77 kgŠiškevičius
26
70 kgGutierrez
29
63 kgMarengo
30
69 kgGaillard
31
64 kgHrinkow
34
61 kg
2
68 kgPozdnyakov
3
67 kgSellier
4
68 kgAït El Abdia
6
66 kgMager
7
60 kgPutt
9
75 kgShumov
10
65 kgAsadov
11
77 kgRumac
13
71 kgTybor
15
72 kgJourniaux
17
63 kgJones
18
64 kgLahsaini
21
77 kgŠiškevičius
26
70 kgGutierrez
29
63 kgMarengo
30
69 kgGaillard
31
64 kgHrinkow
34
61 kg
Weight (KG) →
Result →
77
60
2
34
# | Rider | Weight (KG) |
---|---|---|
2 | KEOUGH Luke | 68 |
3 | POZDNYAKOV Kirill | 67 |
4 | SELLIER Simon | 68 |
6 | AÏT EL ABDIA Anass | 66 |
7 | MAGER Christian | 60 |
9 | PUTT Tanner | 75 |
10 | SHUMOV Nikolai | 65 |
11 | ASADOV Elchin | 77 |
13 | RUMAC Josip | 71 |
15 | TYBOR Patrik | 72 |
17 | JOURNIAUX Axel | 63 |
18 | JONES Chris | 64 |
21 | LAHSAINI Mouhssine | 77 |
26 | ŠIŠKEVIČIUS Paulius | 70 |
29 | GUTIERREZ José Manuel | 63 |
30 | MARENGO Umberto | 69 |
31 | GAILLARD Marlon | 64 |
34 | HRINKOW Dominik | 61 |