Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 135
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Hennequin
1
64 kgWięczkowski
3
63 kgTagliani
4
70 kgBoulahoite
6
75 kgSilva
11
69 kgKhafi
13
65 kgParashchak
18
66 kgKarić
19
78 kgFrancisco
28
62 kgAziz
30
64 kgPérez-Landaluce
32
70 kgBerhane
37
66 kgGainza
45
65 kgÖzgür
47
75 kgMujika
64
60 kgSoula
65
68 kgGaledo
70
58 kgVedel
75
60 kgGreen
76
70 kgDuval
78
67 kg
1
64 kgWięczkowski
3
63 kgTagliani
4
70 kgBoulahoite
6
75 kgSilva
11
69 kgKhafi
13
65 kgParashchak
18
66 kgKarić
19
78 kgFrancisco
28
62 kgAziz
30
64 kgPérez-Landaluce
32
70 kgBerhane
37
66 kgGainza
45
65 kgÖzgür
47
75 kgMujika
64
60 kgSoula
65
68 kgGaledo
70
58 kgVedel
75
60 kgGreen
76
70 kgDuval
78
67 kg
Weight (KG) →
Result →
78
58
1
78
# | Rider | Weight (KG) |
---|---|---|
1 | HENNEQUIN Paul | 64 |
3 | WIĘCZKOWSKI Paweł | 63 |
4 | TAGLIANI Filippo | 70 |
6 | BOULAHOITE Rayan | 75 |
11 | SILVA João | 69 |
13 | KHAFI Oussama | 65 |
18 | PARASHCHAK Yaroslav | 66 |
19 | KARIĆ Vedad | 78 |
28 | FRANCISCO Jude Gabriel | 62 |
30 | AZIZ Mohab Youssef | 64 |
32 | PÉREZ-LANDALUCE Eduardo | 70 |
37 | BERHANE Natnael | 66 |
45 | GAINZA Alejandro | 65 |
47 | ÖZGÜR Batuhan | 75 |
64 | MUJIKA Mikel | 60 |
65 | SOULA Guillaume | 68 |
70 | GALEDO Mark John Lexer | 58 |
75 | VEDEL Gabin | 60 |
76 | GREEN Siméon | 70 |
78 | DUVAL Gwendy | 67 |