Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Ratto
1
74 kgvan Garderen
2
72 kgNavardauskas
4
79 kgGuldhammer
5
66 kgSaggiorato
6
58 kgMcEvoy
13
67 kgPantano
14
61 kgFumeaux
15
61 kgHalleguen
19
67 kgZangerle
23
63 kgZoidl
24
63 kgDowsett
27
75 kgSelander
31
72 kgJuul-Jensen
34
73 kgBellis
35
69 kgHardy
47
62 kgBär
51
66 kgBajc
54
65 kgMcNally
61
72 kgMargot
64
65 kgLovassy
68
71 kgAppollonio
83
67 kgNuritdinov
98
68 kg
1
74 kgvan Garderen
2
72 kgNavardauskas
4
79 kgGuldhammer
5
66 kgSaggiorato
6
58 kgMcEvoy
13
67 kgPantano
14
61 kgFumeaux
15
61 kgHalleguen
19
67 kgZangerle
23
63 kgZoidl
24
63 kgDowsett
27
75 kgSelander
31
72 kgJuul-Jensen
34
73 kgBellis
35
69 kgHardy
47
62 kgBär
51
66 kgBajc
54
65 kgMcNally
61
72 kgMargot
64
65 kgLovassy
68
71 kgAppollonio
83
67 kgNuritdinov
98
68 kg
Weight (KG) →
Result →
79
58
1
98
# | Rider | Weight (KG) |
---|---|---|
1 | RATTO Daniele | 74 |
2 | VAN GARDEREN Tejay | 72 |
4 | NAVARDAUSKAS Ramūnas | 79 |
5 | GULDHAMMER Rasmus | 66 |
6 | SAGGIORATO Mirco | 58 |
13 | MCEVOY Jonathan | 67 |
14 | PANTANO Jarlinson | 61 |
15 | FUMEAUX Jonathan | 61 |
19 | HALLEGUEN Mathieu | 67 |
23 | ZANGERLE Joel | 63 |
24 | ZOIDL Riccardo | 63 |
27 | DOWSETT Alex | 75 |
31 | SELANDER Bjorn | 72 |
34 | JUUL-JENSEN Christopher | 73 |
35 | BELLIS Jonathan | 69 |
47 | HARDY Romain | 62 |
51 | BÄR Michael | 66 |
54 | BAJC Andi | 65 |
61 | MCNALLY Mark | 72 |
64 | MARGOT Arnaud | 65 |
68 | LOVASSY Krisztián | 71 |
83 | APPOLLONIO Davide | 67 |
98 | NURITDINOV Rafael | 68 |