Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Mas
2
69 kgLechuga
3
67 kgArchbold
6
79 kgSummerhill
8
70 kgDillier
11
75 kgAntunes
12
58 kgKoretzky
13
66 kgBol
15
71 kgPhinney
18
82 kgJuul-Jensen
19
73 kgPolnický
30
68 kgLourenço
35
62 kgAfonso
38
56 kgOliveira
39
67 kgTorres
43
70 kgAregger
64
70 kgThièry
71
67 kgCambianica
73
64 kgHasnaoui
89
80 kg
2
69 kgLechuga
3
67 kgArchbold
6
79 kgSummerhill
8
70 kgDillier
11
75 kgAntunes
12
58 kgKoretzky
13
66 kgBol
15
71 kgPhinney
18
82 kgJuul-Jensen
19
73 kgPolnický
30
68 kgLourenço
35
62 kgAfonso
38
56 kgOliveira
39
67 kgTorres
43
70 kgAregger
64
70 kgThièry
71
67 kgCambianica
73
64 kgHasnaoui
89
80 kg
Weight (KG) →
Result →
82
56
2
89
# | Rider | Weight (KG) |
---|---|---|
2 | MAS Lluís | 69 |
3 | LECHUGA Pablo | 67 |
6 | ARCHBOLD Shane | 79 |
8 | SUMMERHILL Daniel | 70 |
11 | DILLIER Silvan | 75 |
12 | ANTUNES Amaro | 58 |
13 | KORETZKY Clément | 66 |
15 | BOL Jetse | 71 |
18 | PHINNEY Taylor | 82 |
19 | JUUL-JENSEN Christopher | 73 |
30 | POLNICKÝ Jiří | 68 |
35 | LOURENÇO Guilherme | 62 |
38 | AFONSO Luis | 56 |
39 | OLIVEIRA Nelson | 67 |
43 | TORRES Albert | 70 |
64 | AREGGER Marcel | 70 |
71 | THIÈRY Cyrille | 67 |
73 | CAMBIANICA Enea | 64 |
89 | HASNAOUI Maher | 80 |