Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 72
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Brown
1
65 kgJaun
7
66 kgvan Kessel
14
68 kgde Greef
20
65 kgGroen
21
70.5 kgKrauwel
23
77 kgTeunissen
24
73 kgCraddock
25
69 kgGrosu
27
68 kgMannion
32
58 kgSuter
34
70 kgRathe
35
74 kgVan Zyl
42
72 kgAyazbayev
49
75 kgChavanne
51
83 kgLutsenko
67
74 kgPetrovski
68
69 kg
1
65 kgJaun
7
66 kgvan Kessel
14
68 kgde Greef
20
65 kgGroen
21
70.5 kgKrauwel
23
77 kgTeunissen
24
73 kgCraddock
25
69 kgGrosu
27
68 kgMannion
32
58 kgSuter
34
70 kgRathe
35
74 kgVan Zyl
42
72 kgAyazbayev
49
75 kgChavanne
51
83 kgLutsenko
67
74 kgPetrovski
68
69 kg
Weight (KG) →
Result →
83
58
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | BROWN Nathan | 65 |
7 | JAUN Lukas | 66 |
14 | VAN KESSEL Corné | 68 |
20 | DE GREEF Robbert | 65 |
21 | GROEN Ike | 70.5 |
23 | KRAUWEL Bas | 77 |
24 | TEUNISSEN Mike | 73 |
25 | CRADDOCK Lawson | 69 |
27 | GROSU Eduard-Michael | 68 |
32 | MANNION Gavin | 58 |
34 | SUTER Gaël | 70 |
35 | RATHE Jacob | 74 |
42 | VAN ZYL Johann | 72 |
49 | AYAZBAYEV Maxat | 75 |
51 | CHAVANNE Gabriel | 83 |
67 | LUTSENKO Alexey | 74 |
68 | PETROVSKI Stefan | 69 |