Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 44
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Brown
1
65 kgCraddock
3
69 kgSuter
4
70 kgJaun
7
66 kgKrauwel
10
77 kgChavanne
14
83 kgde Greef
16
65 kgvan Kessel
18
68 kgMannion
21
58 kgRathe
24
74 kgVan Zyl
31
72 kgGrosu
34
68 kgPellaud
44
70 kgLutsenko
50
74 kgGroen
59
70.5 kgTeunissen
76
73 kgPetrovski
84
69 kgAyazbayev
90
75 kg
1
65 kgCraddock
3
69 kgSuter
4
70 kgJaun
7
66 kgKrauwel
10
77 kgChavanne
14
83 kgde Greef
16
65 kgvan Kessel
18
68 kgMannion
21
58 kgRathe
24
74 kgVan Zyl
31
72 kgGrosu
34
68 kgPellaud
44
70 kgLutsenko
50
74 kgGroen
59
70.5 kgTeunissen
76
73 kgPetrovski
84
69 kgAyazbayev
90
75 kg
Weight (KG) →
Result →
83
58
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | BROWN Nathan | 65 |
3 | CRADDOCK Lawson | 69 |
4 | SUTER Gaël | 70 |
7 | JAUN Lukas | 66 |
10 | KRAUWEL Bas | 77 |
14 | CHAVANNE Gabriel | 83 |
16 | DE GREEF Robbert | 65 |
18 | VAN KESSEL Corné | 68 |
21 | MANNION Gavin | 58 |
24 | RATHE Jacob | 74 |
31 | VAN ZYL Johann | 72 |
34 | GROSU Eduard-Michael | 68 |
44 | PELLAUD Simon | 70 |
50 | LUTSENKO Alexey | 74 |
59 | GROEN Ike | 70.5 |
76 | TEUNISSEN Mike | 73 |
84 | PETROVSKI Stefan | 69 |
90 | AYAZBAYEV Maxat | 75 |