Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.5 * weight - 142
This means that on average for every extra kilogram weight a rider loses 2.5 positions in the result.
Brown
4
65 kgJaun
12
66 kgGroen
13
70.5 kgCraddock
15
69 kgMannion
16
58 kgTeunissen
24
73 kgde Greef
26
65 kgRathe
30
74 kgvan Kessel
32
68 kgGrosu
34
68 kgKrauwel
37
77 kgSuter
40
70 kgVan Zyl
46
72 kgPellaud
49
70 kgAyazbayev
60
75 kgLutsenko
72
74 kgPetrovski
75
69 kgChavanne
77
83 kg
4
65 kgJaun
12
66 kgGroen
13
70.5 kgCraddock
15
69 kgMannion
16
58 kgTeunissen
24
73 kgde Greef
26
65 kgRathe
30
74 kgvan Kessel
32
68 kgGrosu
34
68 kgKrauwel
37
77 kgSuter
40
70 kgVan Zyl
46
72 kgPellaud
49
70 kgAyazbayev
60
75 kgLutsenko
72
74 kgPetrovski
75
69 kgChavanne
77
83 kg
Weight (KG) →
Result →
83
58
4
77
# | Rider | Weight (KG) |
---|---|---|
4 | BROWN Nathan | 65 |
12 | JAUN Lukas | 66 |
13 | GROEN Ike | 70.5 |
15 | CRADDOCK Lawson | 69 |
16 | MANNION Gavin | 58 |
24 | TEUNISSEN Mike | 73 |
26 | DE GREEF Robbert | 65 |
30 | RATHE Jacob | 74 |
32 | VAN KESSEL Corné | 68 |
34 | GROSU Eduard-Michael | 68 |
37 | KRAUWEL Bas | 77 |
40 | SUTER Gaël | 70 |
46 | VAN ZYL Johann | 72 |
49 | PELLAUD Simon | 70 |
60 | AYAZBAYEV Maxat | 75 |
72 | LUTSENKO Alexey | 74 |
75 | PETROVSKI Stefan | 69 |
77 | CHAVANNE Gabriel | 83 |