Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 88
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Brown
3
65 kgJaun
10
66 kgvan Kessel
15
68 kgPetrovski
20
69 kgTeunissen
22
73 kgGroen
25
70.5 kgAyazbayev
28
75 kgKrauwel
29
77 kgde Greef
32
65 kgGrosu
44
68 kgPellaud
55
70 kgCraddock
62
69 kgMannion
65
58 kgSuter
69
70 kgRathe
74
74 kgVan Zyl
84
72 kgChavanne
91
83 kgLutsenko
96
74 kg
3
65 kgJaun
10
66 kgvan Kessel
15
68 kgPetrovski
20
69 kgTeunissen
22
73 kgGroen
25
70.5 kgAyazbayev
28
75 kgKrauwel
29
77 kgde Greef
32
65 kgGrosu
44
68 kgPellaud
55
70 kgCraddock
62
69 kgMannion
65
58 kgSuter
69
70 kgRathe
74
74 kgVan Zyl
84
72 kgChavanne
91
83 kgLutsenko
96
74 kg
Weight (KG) →
Result →
83
58
3
96
# | Rider | Weight (KG) |
---|---|---|
3 | BROWN Nathan | 65 |
10 | JAUN Lukas | 66 |
15 | VAN KESSEL Corné | 68 |
20 | PETROVSKI Stefan | 69 |
22 | TEUNISSEN Mike | 73 |
25 | GROEN Ike | 70.5 |
28 | AYAZBAYEV Maxat | 75 |
29 | KRAUWEL Bas | 77 |
32 | DE GREEF Robbert | 65 |
44 | GROSU Eduard-Michael | 68 |
55 | PELLAUD Simon | 70 |
62 | CRADDOCK Lawson | 69 |
65 | MANNION Gavin | 58 |
69 | SUTER Gaël | 70 |
74 | RATHE Jacob | 74 |
84 | VAN ZYL Johann | 72 |
91 | CHAVANNE Gabriel | 83 |
96 | LUTSENKO Alexey | 74 |