Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 69
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Craddock
1
69 kgBrown
5
65 kgJaun
10
66 kgvan Kessel
14
68 kgGrosu
17
68 kgChavanne
19
83 kgde Greef
21
65 kgMannion
23
58 kgKrauwel
25
77 kgVan Zyl
37
72 kgGroen
38
70.5 kgTeunissen
43
73 kgPetrovski
51
69 kgLutsenko
62
74 kgSuter
69
70 kgAyazbayev
70
75 kgRathe
81
74 kgPellaud
82
70 kg
1
69 kgBrown
5
65 kgJaun
10
66 kgvan Kessel
14
68 kgGrosu
17
68 kgChavanne
19
83 kgde Greef
21
65 kgMannion
23
58 kgKrauwel
25
77 kgVan Zyl
37
72 kgGroen
38
70.5 kgTeunissen
43
73 kgPetrovski
51
69 kgLutsenko
62
74 kgSuter
69
70 kgAyazbayev
70
75 kgRathe
81
74 kgPellaud
82
70 kg
Weight (KG) →
Result →
83
58
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | CRADDOCK Lawson | 69 |
5 | BROWN Nathan | 65 |
10 | JAUN Lukas | 66 |
14 | VAN KESSEL Corné | 68 |
17 | GROSU Eduard-Michael | 68 |
19 | CHAVANNE Gabriel | 83 |
21 | DE GREEF Robbert | 65 |
23 | MANNION Gavin | 58 |
25 | KRAUWEL Bas | 77 |
37 | VAN ZYL Johann | 72 |
38 | GROEN Ike | 70.5 |
43 | TEUNISSEN Mike | 73 |
51 | PETROVSKI Stefan | 69 |
62 | LUTSENKO Alexey | 74 |
69 | SUTER Gaël | 70 |
70 | AYAZBAYEV Maxat | 75 |
81 | RATHE Jacob | 74 |
82 | PELLAUD Simon | 70 |