Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.9 * weight + 251
This means that on average for every extra kilogram weight a rider loses -2.9 positions in the result.
Craddock
1
69 kgNorman Leth
3
75 kgChavanne
4
83 kgKüng
11
83 kgGrosu
12
68 kgKragh Andersen
13
72 kgÖrken
25
69 kgPellaud
27
70 kgKolář
28
90 kgForster
30
68 kgSuter
32
70 kgLienhard
40
73 kgRoosen
50
78 kgVakoč
57
68 kgAyazbayev
59
75 kgStüssi
71
68 kgMeintjes
76
58 kgThalmann
97
61 kgBaillifard
113
54 kgJulius
136
59 kg
1
69 kgNorman Leth
3
75 kgChavanne
4
83 kgKüng
11
83 kgGrosu
12
68 kgKragh Andersen
13
72 kgÖrken
25
69 kgPellaud
27
70 kgKolář
28
90 kgForster
30
68 kgSuter
32
70 kgLienhard
40
73 kgRoosen
50
78 kgVakoč
57
68 kgAyazbayev
59
75 kgStüssi
71
68 kgMeintjes
76
58 kgThalmann
97
61 kgBaillifard
113
54 kgJulius
136
59 kg
Weight (KG) →
Result →
90
54
1
136
# | Rider | Weight (KG) |
---|---|---|
1 | CRADDOCK Lawson | 69 |
3 | NORMAN LETH Lasse | 75 |
4 | CHAVANNE Gabriel | 83 |
11 | KÜNG Stefan | 83 |
12 | GROSU Eduard-Michael | 68 |
13 | KRAGH ANDERSEN Asbjørn | 72 |
25 | ÖRKEN Ahmet | 69 |
27 | PELLAUD Simon | 70 |
28 | KOLÁŘ Michael | 90 |
30 | FORSTER Lars | 68 |
32 | SUTER Gaël | 70 |
40 | LIENHARD Fabian | 73 |
50 | ROOSEN Timo | 78 |
57 | VAKOČ Petr | 68 |
59 | AYAZBAYEV Maxat | 75 |
71 | STÜSSI Colin | 68 |
76 | MEINTJES Louis | 58 |
97 | THALMANN Roland | 61 |
113 | BAILLIFARD Valentin | 54 |
136 | JULIUS Jayde | 59 |