Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Vakoč
3
68 kgJulius
4
59 kgChavanne
6
83 kgÖrken
9
69 kgAyazbayev
20
75 kgKragh Andersen
21
72 kgKüng
30
83 kgCraddock
36
69 kgForster
38
68 kgLienhard
45
73 kgPellaud
48
70 kgMeintjes
50
58 kgNorman Leth
54
75 kgBaillifard
66
54 kgStüssi
77
68 kgThalmann
84
61 kgGrosu
110
68 kgSuter
116
70 kgRoosen
122
78 kgKolář
140
90 kg
3
68 kgJulius
4
59 kgChavanne
6
83 kgÖrken
9
69 kgAyazbayev
20
75 kgKragh Andersen
21
72 kgKüng
30
83 kgCraddock
36
69 kgForster
38
68 kgLienhard
45
73 kgPellaud
48
70 kgMeintjes
50
58 kgNorman Leth
54
75 kgBaillifard
66
54 kgStüssi
77
68 kgThalmann
84
61 kgGrosu
110
68 kgSuter
116
70 kgRoosen
122
78 kgKolář
140
90 kg
Weight (KG) →
Result →
90
54
3
140
# | Rider | Weight (KG) |
---|---|---|
3 | VAKOČ Petr | 68 |
4 | JULIUS Jayde | 59 |
6 | CHAVANNE Gabriel | 83 |
9 | ÖRKEN Ahmet | 69 |
20 | AYAZBAYEV Maxat | 75 |
21 | KRAGH ANDERSEN Asbjørn | 72 |
30 | KÜNG Stefan | 83 |
36 | CRADDOCK Lawson | 69 |
38 | FORSTER Lars | 68 |
45 | LIENHARD Fabian | 73 |
48 | PELLAUD Simon | 70 |
50 | MEINTJES Louis | 58 |
54 | NORMAN LETH Lasse | 75 |
66 | BAILLIFARD Valentin | 54 |
77 | STÜSSI Colin | 68 |
84 | THALMANN Roland | 61 |
110 | GROSU Eduard-Michael | 68 |
116 | SUTER Gaël | 70 |
122 | ROOSEN Timo | 78 |
140 | KOLÁŘ Michael | 90 |