Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Vakoč
1
68 kgLienhard
2
73 kgCraddock
3
69 kgKragh Andersen
4
72 kgJulius
7
59 kgNorman Leth
8
75 kgAyazbayev
9
75 kgKüng
10
83 kgMeintjes
12
58 kgPellaud
14
70 kgÖrken
20
69 kgForster
22
68 kgChavanne
48
83 kgThalmann
67
61 kgBaillifard
82
54 kgGrosu
91
68 kgStüssi
93
68 kgRoosen
110
78 kgKolář
119
90 kgSuter
128
70 kg
1
68 kgLienhard
2
73 kgCraddock
3
69 kgKragh Andersen
4
72 kgJulius
7
59 kgNorman Leth
8
75 kgAyazbayev
9
75 kgKüng
10
83 kgMeintjes
12
58 kgPellaud
14
70 kgÖrken
20
69 kgForster
22
68 kgChavanne
48
83 kgThalmann
67
61 kgBaillifard
82
54 kgGrosu
91
68 kgStüssi
93
68 kgRoosen
110
78 kgKolář
119
90 kgSuter
128
70 kg
Weight (KG) →
Result →
90
54
1
128
# | Rider | Weight (KG) |
---|---|---|
1 | VAKOČ Petr | 68 |
2 | LIENHARD Fabian | 73 |
3 | CRADDOCK Lawson | 69 |
4 | KRAGH ANDERSEN Asbjørn | 72 |
7 | JULIUS Jayde | 59 |
8 | NORMAN LETH Lasse | 75 |
9 | AYAZBAYEV Maxat | 75 |
10 | KÜNG Stefan | 83 |
12 | MEINTJES Louis | 58 |
14 | PELLAUD Simon | 70 |
20 | ÖRKEN Ahmet | 69 |
22 | FORSTER Lars | 68 |
48 | CHAVANNE Gabriel | 83 |
67 | THALMANN Roland | 61 |
82 | BAILLIFARD Valentin | 54 |
91 | GROSU Eduard-Michael | 68 |
93 | STÜSSI Colin | 68 |
110 | ROOSEN Timo | 78 |
119 | KOLÁŘ Michael | 90 |
128 | SUTER Gaël | 70 |