Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Costa
1
61 kgGeniets
2
73 kgBarta
3
61 kgGregaard
6
66 kgWirtgen
7
77 kgMüller
8
74 kgMäder
9
61 kgSchultz
10
60 kgVingegaard
13
58 kgJacobs
15
78 kgVeltman
16
66 kgRüegg
20
66 kgKongstad
22
75 kgvan den Berg
30
78 kgScaroni
36
63 kgRüegg
50
66 kgBanzer
55
56 kgHonoré
56
68 kgMengoulas
58
66 kgAlizada
61
68 kgUhlmann
62
69 kg
1
61 kgGeniets
2
73 kgBarta
3
61 kgGregaard
6
66 kgWirtgen
7
77 kgMüller
8
74 kgMäder
9
61 kgSchultz
10
60 kgVingegaard
13
58 kgJacobs
15
78 kgVeltman
16
66 kgRüegg
20
66 kgKongstad
22
75 kgvan den Berg
30
78 kgScaroni
36
63 kgRüegg
50
66 kgBanzer
55
56 kgHonoré
56
68 kgMengoulas
58
66 kgAlizada
61
68 kgUhlmann
62
69 kg
Weight (KG) →
Result →
78
56
1
62
# | Rider | Weight (KG) |
---|---|---|
1 | COSTA Adrien | 61 |
2 | GENIETS Kevin | 73 |
3 | BARTA Will | 61 |
6 | GREGAARD Jonas | 66 |
7 | WIRTGEN Tom | 77 |
8 | MÜLLER Patrick | 74 |
9 | MÄDER Gino | 61 |
10 | SCHULTZ Jesper | 60 |
13 | VINGEGAARD Jonas | 58 |
15 | JACOBS Johan | 78 |
16 | VELTMAN Milan | 66 |
20 | RÜEGG Lukas | 66 |
22 | KONGSTAD Tobias | 75 |
30 | VAN DEN BERG Julius | 78 |
36 | SCARONI Christian | 63 |
50 | RÜEGG Timon | 66 |
55 | BANZER Gordian | 56 |
56 | HONORÉ Mikkel Frølich | 68 |
58 | MENGOULAS Alex | 66 |
61 | ALIZADA Elgun | 68 |
62 | UHLMANN Sven | 69 |