Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Müller
1
74 kgBarta
3
61 kgScaroni
5
63 kgWirtgen
11
77 kgGregaard
12
66 kgVeltman
13
66 kgGeniets
15
73 kgRüegg
16
66 kgMäder
18
61 kgCosta
20
61 kgSchultz
21
60 kgvan den Berg
22
78 kgKongstad
33
75 kgVingegaard
39
58 kgJacobs
40
78 kgMengoulas
52
66 kgBanzer
58
56 kgRüegg
59
66 kgHonoré
61
68 kgUhlmann
65
69 kgAlizada
69
68 kg
1
74 kgBarta
3
61 kgScaroni
5
63 kgWirtgen
11
77 kgGregaard
12
66 kgVeltman
13
66 kgGeniets
15
73 kgRüegg
16
66 kgMäder
18
61 kgCosta
20
61 kgSchultz
21
60 kgvan den Berg
22
78 kgKongstad
33
75 kgVingegaard
39
58 kgJacobs
40
78 kgMengoulas
52
66 kgBanzer
58
56 kgRüegg
59
66 kgHonoré
61
68 kgUhlmann
65
69 kgAlizada
69
68 kg
Weight (KG) →
Result →
78
56
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | MÜLLER Patrick | 74 |
3 | BARTA Will | 61 |
5 | SCARONI Christian | 63 |
11 | WIRTGEN Tom | 77 |
12 | GREGAARD Jonas | 66 |
13 | VELTMAN Milan | 66 |
15 | GENIETS Kevin | 73 |
16 | RÜEGG Lukas | 66 |
18 | MÄDER Gino | 61 |
20 | COSTA Adrien | 61 |
21 | SCHULTZ Jesper | 60 |
22 | VAN DEN BERG Julius | 78 |
33 | KONGSTAD Tobias | 75 |
39 | VINGEGAARD Jonas | 58 |
40 | JACOBS Johan | 78 |
52 | MENGOULAS Alex | 66 |
58 | BANZER Gordian | 56 |
59 | RÜEGG Timon | 66 |
61 | HONORÉ Mikkel Frølich | 68 |
65 | UHLMANN Sven | 69 |
69 | ALIZADA Elgun | 68 |