Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Viviani
1
67 kgBouhanni
2
65 kgNapolitano
3
81 kgSarreau
4
76 kgLevasseur
5
74 kgBoev
6
74 kgBarbier
7
79 kgMareczko
8
67 kgMcLay
9
72 kgWelten
10
81 kgBarbero
11
66 kgVelasco
12
59 kgReijnen
13
63 kgStenuit
14
77 kgFarazijn
15
73.5 kgLeveau
16
67 kgWackermann
17
68 kgVan Rooy
18
70 kgBeppu
19
69 kgChavanel
20
73 kg
1
67 kgBouhanni
2
65 kgNapolitano
3
81 kgSarreau
4
76 kgLevasseur
5
74 kgBoev
6
74 kgBarbier
7
79 kgMareczko
8
67 kgMcLay
9
72 kgWelten
10
81 kgBarbero
11
66 kgVelasco
12
59 kgReijnen
13
63 kgStenuit
14
77 kgFarazijn
15
73.5 kgLeveau
16
67 kgWackermann
17
68 kgVan Rooy
18
70 kgBeppu
19
69 kgChavanel
20
73 kg
Weight (KG) →
Result →
81
59
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | VIVIANI Elia | 67 |
2 | BOUHANNI Nacer | 65 |
3 | NAPOLITANO Danilo | 81 |
4 | SARREAU Marc | 76 |
5 | LEVASSEUR Jordan | 74 |
6 | BOEV Igor | 74 |
7 | BARBIER Rudy | 79 |
8 | MARECZKO Jakub | 67 |
9 | MCLAY Daniel | 72 |
10 | WELTEN Bram | 81 |
11 | BARBERO Carlos | 66 |
12 | VELASCO Simone | 59 |
13 | REIJNEN Kiel | 63 |
14 | STENUIT Robin | 77 |
15 | FARAZIJN Maxime | 73.5 |
16 | LEVEAU Jérémy | 67 |
17 | WACKERMANN Luca | 68 |
18 | VAN ROOY Kenneth | 70 |
19 | BEPPU Fumiyuki | 69 |
20 | CHAVANEL Sylvain | 73 |