Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Viviani
1
67 kgConsonni
2
60 kgSarreau
3
76 kgGrosu
4
68 kgDupont
5
72 kgVermeulen
6
64 kgHofstetter
7
66 kgViel
8
72 kgSwift
10
75 kgWackermann
11
68 kgRajović
12
74 kgJauregui
13
60 kgZingle
14
67 kgBoudat
16
70 kgBonnamour
17
70 kgPerez
18
70 kgGallopin
19
69 kgKowalski
20
67 kgLópez
21
70 kgDenis
22
67 kg
1
67 kgConsonni
2
60 kgSarreau
3
76 kgGrosu
4
68 kgDupont
5
72 kgVermeulen
6
64 kgHofstetter
7
66 kgViel
8
72 kgSwift
10
75 kgWackermann
11
68 kgRajović
12
74 kgJauregui
13
60 kgZingle
14
67 kgBoudat
16
70 kgBonnamour
17
70 kgPerez
18
70 kgGallopin
19
69 kgKowalski
20
67 kgLópez
21
70 kgDenis
22
67 kg
Weight (KG) →
Result →
76
60
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VIVIANI Elia | 67 |
2 | CONSONNI Simone | 60 |
3 | SARREAU Marc | 76 |
4 | GROSU Eduard-Michael | 68 |
5 | DUPONT Timothy | 72 |
6 | VERMEULEN Emiel | 64 |
7 | HOFSTETTER Hugo | 66 |
8 | VIEL Mattia | 72 |
10 | SWIFT Connor | 75 |
11 | WACKERMANN Luca | 68 |
12 | RAJOVIĆ Dušan | 74 |
13 | JAUREGUI Quentin | 60 |
14 | ZINGLE Axel | 67 |
16 | BOUDAT Thomas | 70 |
17 | BONNAMOUR Franck | 70 |
18 | PEREZ Anthony | 70 |
19 | GALLOPIN Tony | 69 |
20 | KOWALSKI Dylan | 67 |
21 | LÓPEZ Diego | 70 |
22 | DENIS Thomas | 67 |