Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Peters
6
72 kgJauregui
7
60 kgBaeyens
13
54 kgvan der Poel
16
75 kgBudding
22
74 kgHemroulle
25
66 kgRobeet
32
75 kgPicoux
34
71 kgMertz
38
70 kgVan Gompel
42
70 kgSellier
46
68 kgGrellier
47
65 kgde Kleijn
48
68 kgVan Gestel
49
74 kgLeplingard
52
68 kgArslanov
87
63 kgDe Plus
98
67 kgSoballa
105
71 kgDeruette
108
70 kgvan der Kooij
111
70 kg
6
72 kgJauregui
7
60 kgBaeyens
13
54 kgvan der Poel
16
75 kgBudding
22
74 kgHemroulle
25
66 kgRobeet
32
75 kgPicoux
34
71 kgMertz
38
70 kgVan Gompel
42
70 kgSellier
46
68 kgGrellier
47
65 kgde Kleijn
48
68 kgVan Gestel
49
74 kgLeplingard
52
68 kgArslanov
87
63 kgDe Plus
98
67 kgSoballa
105
71 kgDeruette
108
70 kgvan der Kooij
111
70 kg
Weight (KG) →
Result →
75
54
6
111
# | Rider | Weight (KG) |
---|---|---|
6 | PETERS Nans | 72 |
7 | JAUREGUI Quentin | 60 |
13 | BAEYENS James | 54 |
16 | VAN DER POEL Mathieu | 75 |
22 | BUDDING Martijn | 74 |
25 | HEMROULLE Johan | 66 |
32 | ROBEET Ludovic | 75 |
34 | PICOUX Maximilien | 71 |
38 | MERTZ Rémy | 70 |
42 | VAN GOMPEL Mathias | 70 |
46 | SELLIER Simon | 68 |
47 | GRELLIER Fabien | 65 |
48 | DE KLEIJN Arvid | 68 |
49 | VAN GESTEL Dries | 74 |
52 | LEPLINGARD Antoine | 68 |
87 | ARSLANOV Ildar | 63 |
98 | DE PLUS Laurens | 67 |
105 | SOBALLA Carl | 71 |
108 | DERUETTE Thomas | 70 |
111 | VAN DER KOOIJ Bas | 70 |