Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 124
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Peters
2
72 kgvan der Poel
4
75 kgVan Gestel
5
74 kgSellier
8
68 kgSoballa
14
71 kgArslanov
16
63 kgRobeet
17
75 kgLeplingard
20
68 kgJauregui
21
60 kgMertz
29
70 kgBudding
32
74 kgde Kleijn
33
68 kgHemroulle
37
66 kgVan Gompel
38
70 kgGrellier
52
65 kgDe Plus
56
67 kgBaeyens
62
54 kgDeruette
91
70 kgPicoux
97
71 kg
2
72 kgvan der Poel
4
75 kgVan Gestel
5
74 kgSellier
8
68 kgSoballa
14
71 kgArslanov
16
63 kgRobeet
17
75 kgLeplingard
20
68 kgJauregui
21
60 kgMertz
29
70 kgBudding
32
74 kgde Kleijn
33
68 kgHemroulle
37
66 kgVan Gompel
38
70 kgGrellier
52
65 kgDe Plus
56
67 kgBaeyens
62
54 kgDeruette
91
70 kgPicoux
97
71 kg
Weight (KG) →
Result →
75
54
2
97
# | Rider | Weight (KG) |
---|---|---|
2 | PETERS Nans | 72 |
4 | VAN DER POEL Mathieu | 75 |
5 | VAN GESTEL Dries | 74 |
8 | SELLIER Simon | 68 |
14 | SOBALLA Carl | 71 |
16 | ARSLANOV Ildar | 63 |
17 | ROBEET Ludovic | 75 |
20 | LEPLINGARD Antoine | 68 |
21 | JAUREGUI Quentin | 60 |
29 | MERTZ Rémy | 70 |
32 | BUDDING Martijn | 74 |
33 | DE KLEIJN Arvid | 68 |
37 | HEMROULLE Johan | 66 |
38 | VAN GOMPEL Mathias | 70 |
52 | GRELLIER Fabien | 65 |
56 | DE PLUS Laurens | 67 |
62 | BAEYENS James | 54 |
91 | DERUETTE Thomas | 70 |
97 | PICOUX Maximilien | 71 |