Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 85
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Van Gestel
2
74 kgJauregui
4
60 kgGrellier
5
65 kgvan der Poel
6
75 kgArslanov
9
63 kgPeters
14
72 kgVan Gompel
17
70 kgMertz
20
70 kgRobeet
21
75 kgLeplingard
32
68 kgSellier
45
68 kgDe Plus
51
67 kgSoballa
59
71 kgBudding
64
74 kgBaeyens
65
54 kgHemroulle
76
66 kgde Kleijn
80
68 kgDeruette
85
70 kg
2
74 kgJauregui
4
60 kgGrellier
5
65 kgvan der Poel
6
75 kgArslanov
9
63 kgPeters
14
72 kgVan Gompel
17
70 kgMertz
20
70 kgRobeet
21
75 kgLeplingard
32
68 kgSellier
45
68 kgDe Plus
51
67 kgSoballa
59
71 kgBudding
64
74 kgBaeyens
65
54 kgHemroulle
76
66 kgde Kleijn
80
68 kgDeruette
85
70 kg
Weight (KG) →
Result →
75
54
2
85
# | Rider | Weight (KG) |
---|---|---|
2 | VAN GESTEL Dries | 74 |
4 | JAUREGUI Quentin | 60 |
5 | GRELLIER Fabien | 65 |
6 | VAN DER POEL Mathieu | 75 |
9 | ARSLANOV Ildar | 63 |
14 | PETERS Nans | 72 |
17 | VAN GOMPEL Mathias | 70 |
20 | MERTZ Rémy | 70 |
21 | ROBEET Ludovic | 75 |
32 | LEPLINGARD Antoine | 68 |
45 | SELLIER Simon | 68 |
51 | DE PLUS Laurens | 67 |
59 | SOBALLA Carl | 71 |
64 | BUDDING Martijn | 74 |
65 | BAEYENS James | 54 |
76 | HEMROULLE Johan | 66 |
80 | DE KLEIJN Arvid | 68 |
85 | DERUETTE Thomas | 70 |