Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 34
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
van der Poel
1
75 kgGesbert
2
63 kgDe Plus
3
67 kgMertz
5
70 kgKurianov
6
74 kgLafay
7
65 kgRivière
8
63 kgParet-Peintre
10
64 kgRochas
11
51 kgCherkasov
13
68 kgVan Gompel
19
70 kgTouzé
20
69 kgVincent
21
62 kgBudding
22
74 kgRusso
23
74 kgLeplingard
25
68 kgCras
26
65 kgGodon
35
74 kgPicoux
41
71 kgSellier
50
68 kgBonnamour
58
70 kgPeeters
66
69 kgReynaerts
73
70 kg
1
75 kgGesbert
2
63 kgDe Plus
3
67 kgMertz
5
70 kgKurianov
6
74 kgLafay
7
65 kgRivière
8
63 kgParet-Peintre
10
64 kgRochas
11
51 kgCherkasov
13
68 kgVan Gompel
19
70 kgTouzé
20
69 kgVincent
21
62 kgBudding
22
74 kgRusso
23
74 kgLeplingard
25
68 kgCras
26
65 kgGodon
35
74 kgPicoux
41
71 kgSellier
50
68 kgBonnamour
58
70 kgPeeters
66
69 kgReynaerts
73
70 kg
Weight (KG) →
Result →
75
51
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Mathieu | 75 |
2 | GESBERT Élie | 63 |
3 | DE PLUS Laurens | 67 |
5 | MERTZ Rémy | 70 |
6 | KURIANOV Stepan | 74 |
7 | LAFAY Victor | 65 |
8 | RIVIÈRE David | 63 |
10 | PARET-PEINTRE Aurélien | 64 |
11 | ROCHAS Rémy | 51 |
13 | CHERKASOV Nikolay | 68 |
19 | VAN GOMPEL Mathias | 70 |
20 | TOUZÉ Damien | 69 |
21 | VINCENT Léo | 62 |
22 | BUDDING Martijn | 74 |
23 | RUSSO Clément | 74 |
25 | LEPLINGARD Antoine | 68 |
26 | CRAS Steff | 65 |
35 | GODON Dorian | 74 |
41 | PICOUX Maximilien | 71 |
50 | SELLIER Simon | 68 |
58 | BONNAMOUR Franck | 70 |
66 | PEETERS Yannick | 69 |
73 | REYNAERTS Wim | 70 |