Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Cras
1
65 kgMortier
10
66 kgBouts
11
62 kgDoleatto
12
61 kgPeeters
13
69 kgReynaerts
14
67 kgGuglielmi
17
66 kgAvoine
21
70 kgSix
23
72 kgGodon
24
74 kgArnoult
25
60 kgLambrecht
33
56 kgTasset
34
63 kgWinter
38
72 kgLafay
39
65 kgEenkhoorn
41
72 kgFiné
45
70 kgInkelaar
46
64 kgCordeiro
59
65 kgBouwmans
87
64 kgMuseeuw
90
68 kg
1
65 kgMortier
10
66 kgBouts
11
62 kgDoleatto
12
61 kgPeeters
13
69 kgReynaerts
14
67 kgGuglielmi
17
66 kgAvoine
21
70 kgSix
23
72 kgGodon
24
74 kgArnoult
25
60 kgLambrecht
33
56 kgTasset
34
63 kgWinter
38
72 kgLafay
39
65 kgEenkhoorn
41
72 kgFiné
45
70 kgInkelaar
46
64 kgCordeiro
59
65 kgBouwmans
87
64 kgMuseeuw
90
68 kg
Weight (KG) →
Result →
74
56
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | CRAS Steff | 65 |
10 | MORTIER Julien | 66 |
11 | BOUTS Jordy | 62 |
12 | DOLEATTO Aurélien | 61 |
13 | PEETERS Yannick | 69 |
14 | REYNAERTS Jan | 67 |
17 | GUGLIELMI Simon | 66 |
21 | AVOINE Kévin | 70 |
23 | SIX Franklin | 72 |
24 | GODON Dorian | 74 |
25 | ARNOULT Floryan | 60 |
33 | LAMBRECHT Bjorg | 56 |
34 | TASSET Marvin | 63 |
38 | WINTER Laurin | 72 |
39 | LAFAY Victor | 65 |
41 | EENKHOORN Pascal | 72 |
45 | FINÉ Eddy | 70 |
46 | INKELAAR Kevin | 64 |
59 | CORDEIRO Damien | 65 |
87 | BOUWMANS Dylan | 64 |
90 | MUSEEUW Stefano | 68 |