Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 63
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Lafay
1
65 kgGodon
3
74 kgInkelaar
9
64 kgEenkhoorn
10
72 kgLambrecht
13
56 kgReynaerts
16
67 kgCras
17
65 kgMortier
18
66 kgGuglielmi
22
66 kgBouts
27
62 kgDoleatto
32
61 kgAvoine
35
70 kgFiné
43
70 kgTasset
44
63 kgPeeters
50
69 kgBouwmans
54
64 kgArnoult
59
60 kgCordeiro
74
65 kgMuseeuw
77
68 kg
1
65 kgGodon
3
74 kgInkelaar
9
64 kgEenkhoorn
10
72 kgLambrecht
13
56 kgReynaerts
16
67 kgCras
17
65 kgMortier
18
66 kgGuglielmi
22
66 kgBouts
27
62 kgDoleatto
32
61 kgAvoine
35
70 kgFiné
43
70 kgTasset
44
63 kgPeeters
50
69 kgBouwmans
54
64 kgArnoult
59
60 kgCordeiro
74
65 kgMuseeuw
77
68 kg
Weight (KG) →
Result →
74
56
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | LAFAY Victor | 65 |
3 | GODON Dorian | 74 |
9 | INKELAAR Kevin | 64 |
10 | EENKHOORN Pascal | 72 |
13 | LAMBRECHT Bjorg | 56 |
16 | REYNAERTS Jan | 67 |
17 | CRAS Steff | 65 |
18 | MORTIER Julien | 66 |
22 | GUGLIELMI Simon | 66 |
27 | BOUTS Jordy | 62 |
32 | DOLEATTO Aurélien | 61 |
35 | AVOINE Kévin | 70 |
43 | FINÉ Eddy | 70 |
44 | TASSET Marvin | 63 |
50 | PEETERS Yannick | 69 |
54 | BOUWMANS Dylan | 64 |
59 | ARNOULT Floryan | 60 |
74 | CORDEIRO Damien | 65 |
77 | MUSEEUW Stefano | 68 |