Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 27
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Huys
4
61 kgBurgaudeau
7
61 kgVanhoof
9
75 kgMoniquet
11
61 kgBrenans
15
63 kgAgrotis
19
67 kgVandebosch
20
69 kgOffermans
24
63 kgRombouts
29
63 kgVenner
30
66 kgBerwick
35
59 kgMontauban
37
68 kgRodes
38
65 kgMariault
40
58 kgJaspers
43
64 kgBonnefoix
48
60 kgLiessens
52
66 kgJensen
55
75 kgVandebosch
62
76 kgDopchie
67
65 kg
4
61 kgBurgaudeau
7
61 kgVanhoof
9
75 kgMoniquet
11
61 kgBrenans
15
63 kgAgrotis
19
67 kgVandebosch
20
69 kgOffermans
24
63 kgRombouts
29
63 kgVenner
30
66 kgBerwick
35
59 kgMontauban
37
68 kgRodes
38
65 kgMariault
40
58 kgJaspers
43
64 kgBonnefoix
48
60 kgLiessens
52
66 kgJensen
55
75 kgVandebosch
62
76 kgDopchie
67
65 kg
Weight (KG) →
Result →
76
58
4
67
# | Rider | Weight (KG) |
---|---|---|
4 | HUYS Laurens | 61 |
7 | BURGAUDEAU Mathieu | 61 |
9 | VANHOOF Ward | 75 |
11 | MONIQUET Sylvain | 61 |
15 | BRENANS Emile | 63 |
19 | AGROTIS Alexandros | 67 |
20 | VANDEBOSCH Toon | 69 |
24 | OFFERMANS Michiel | 63 |
29 | ROMBOUTS Seppe | 63 |
30 | VENNER Quentin | 66 |
35 | BERWICK Sebastian | 59 |
37 | MONTAUBAN Jeremy | 68 |
38 | RODES Eduard | 65 |
40 | MARIAULT Axel | 58 |
43 | JASPERS Jappe | 64 |
48 | BONNEFOIX Edouard | 60 |
52 | LIESSENS Jarno | 66 |
55 | JENSEN Frederik Irgens | 75 |
62 | VANDEBOSCH Victor | 76 |
67 | DOPCHIE Felix | 65 |