Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 58
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Burgaudeau
1
61 kgAgrotis
3
67 kgOffermans
4
63 kgVandebosch
5
69 kgBerwick
7
59 kgRombouts
10
63 kgHuys
11
61 kgJaspers
15
64 kgMoniquet
22
61 kgVanhoof
26
75 kgMariault
31
58 kgRodes
32
65 kgBrenans
40
63 kgVenner
41
66 kgVandebosch
46
76 kgMontauban
55
68 kgBonnefoix
56
60 kgJensen
59
75 kgLiessens
60
66 kgDopchie
71
65 kg
1
61 kgAgrotis
3
67 kgOffermans
4
63 kgVandebosch
5
69 kgBerwick
7
59 kgRombouts
10
63 kgHuys
11
61 kgJaspers
15
64 kgMoniquet
22
61 kgVanhoof
26
75 kgMariault
31
58 kgRodes
32
65 kgBrenans
40
63 kgVenner
41
66 kgVandebosch
46
76 kgMontauban
55
68 kgBonnefoix
56
60 kgJensen
59
75 kgLiessens
60
66 kgDopchie
71
65 kg
Weight (KG) →
Result →
76
58
1
71
# | Rider | Weight (KG) |
---|---|---|
1 | BURGAUDEAU Mathieu | 61 |
3 | AGROTIS Alexandros | 67 |
4 | OFFERMANS Michiel | 63 |
5 | VANDEBOSCH Toon | 69 |
7 | BERWICK Sebastian | 59 |
10 | ROMBOUTS Seppe | 63 |
11 | HUYS Laurens | 61 |
15 | JASPERS Jappe | 64 |
22 | MONIQUET Sylvain | 61 |
26 | VANHOOF Ward | 75 |
31 | MARIAULT Axel | 58 |
32 | RODES Eduard | 65 |
40 | BRENANS Emile | 63 |
41 | VENNER Quentin | 66 |
46 | VANDEBOSCH Victor | 76 |
55 | MONTAUBAN Jeremy | 68 |
56 | BONNEFOIX Edouard | 60 |
59 | JENSEN Frederik Irgens | 75 |
60 | LIESSENS Jarno | 66 |
71 | DOPCHIE Felix | 65 |