Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Jackowiak
4
65 kgNoval
5
72 kgPeace
7
63 kgVerdonck
12
63 kgHudson
19
58 kgVassal
20
65 kgD'hondt
25
62 kgDe Gendt
35
51 kgHerring
43
63 kgTammepuu
64
68 kgReitz
67
57 kgLinser
71
56.7 kgSalamin
82
72 kgHernandez
83
54 kgMartinet
88
66 kgHincapie
96
68 kgHewes
113
69 kg
4
65 kgNoval
5
72 kgPeace
7
63 kgVerdonck
12
63 kgHudson
19
58 kgVassal
20
65 kgD'hondt
25
62 kgDe Gendt
35
51 kgHerring
43
63 kgTammepuu
64
68 kgReitz
67
57 kgLinser
71
56.7 kgSalamin
82
72 kgHernandez
83
54 kgMartinet
88
66 kgHincapie
96
68 kgHewes
113
69 kg
Weight (KG) →
Result →
72
51
4
113
# | Rider | Weight (KG) |
---|---|---|
4 | JACKOWIAK Jan Michal | 65 |
5 | NOVAL Benjamín | 72 |
7 | PEACE Matthew | 63 |
12 | VERDONCK Thomas | 63 |
19 | HUDSON Harry | 58 |
20 | VASSAL Théophile | 65 |
25 | D'HONDT Arne | 62 |
35 | DE GENDT Leander | 51 |
43 | HERRING Louis | 63 |
64 | TAMMEPUU Riko | 68 |
67 | REITZ Braden | 57 |
71 | LINSER Ivan | 56.7 |
82 | SALAMIN Antoine | 72 |
83 | HERNANDEZ Jan | 54 |
88 | MARTINET Valentin | 66 |
96 | HINCAPIE Enzo | 68 |
113 | HEWES Alex | 69 |