Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 112
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Noval
4
72 kgJackowiak
5
65 kgHudson
6
58 kgPeace
10
63 kgReitz
17
57 kgVerdonck
21
63 kgDe Gendt
29
51 kgD'hondt
42
62 kgHincapie
49
68 kgHernandez
68
54 kgVassal
80
65 kgLinser
82
56.7 kgHerring
85
63 kgMartinet
88
66 kgSalamin
104
72 kgTammepuu
153
68 kgHewes
156
69 kg
4
72 kgJackowiak
5
65 kgHudson
6
58 kgPeace
10
63 kgReitz
17
57 kgVerdonck
21
63 kgDe Gendt
29
51 kgD'hondt
42
62 kgHincapie
49
68 kgHernandez
68
54 kgVassal
80
65 kgLinser
82
56.7 kgHerring
85
63 kgMartinet
88
66 kgSalamin
104
72 kgTammepuu
153
68 kgHewes
156
69 kg
Weight (KG) →
Result →
72
51
4
156
# | Rider | Weight (KG) |
---|---|---|
4 | NOVAL Benjamín | 72 |
5 | JACKOWIAK Jan Michal | 65 |
6 | HUDSON Harry | 58 |
10 | PEACE Matthew | 63 |
17 | REITZ Braden | 57 |
21 | VERDONCK Thomas | 63 |
29 | DE GENDT Leander | 51 |
42 | D'HONDT Arne | 62 |
49 | HINCAPIE Enzo | 68 |
68 | HERNANDEZ Jan | 54 |
80 | VASSAL Théophile | 65 |
82 | LINSER Ivan | 56.7 |
85 | HERRING Louis | 63 |
88 | MARTINET Valentin | 66 |
104 | SALAMIN Antoine | 72 |
153 | TAMMEPUU Riko | 68 |
156 | HEWES Alex | 69 |