Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 52
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Vassal
1
65 kgReitz
10
57 kgNoval
16
72 kgDe Gendt
17
51 kgVerdonck
28
63 kgJackowiak
31
65 kgHincapie
38
68 kgHaugetun
39
63 kgPeace
46
63 kgHudson
61
58 kgD'hondt
62
63 kgTammepuu
90
68 kgHerring
122
63 kgLinser
131
56.7 kgHernandez
134
54 kgMeirhaeghe
145
67 kgHewes
156
69 kg
1
65 kgReitz
10
57 kgNoval
16
72 kgDe Gendt
17
51 kgVerdonck
28
63 kgJackowiak
31
65 kgHincapie
38
68 kgHaugetun
39
63 kgPeace
46
63 kgHudson
61
58 kgD'hondt
62
63 kgTammepuu
90
68 kgHerring
122
63 kgLinser
131
56.7 kgHernandez
134
54 kgMeirhaeghe
145
67 kgHewes
156
69 kg
Weight (KG) →
Result →
72
51
1
156
# | Rider | Weight (KG) |
---|---|---|
1 | VASSAL Théophile | 65 |
10 | REITZ Braden | 57 |
16 | NOVAL Benjamín | 72 |
17 | DE GENDT Leander | 51 |
28 | VERDONCK Thomas | 63 |
31 | JACKOWIAK Jan Michal | 65 |
38 | HINCAPIE Enzo | 68 |
39 | HAUGETUN Kristian | 63 |
46 | PEACE Matthew | 63 |
61 | HUDSON Harry | 58 |
62 | D'HONDT Arne | 63 |
90 | TAMMEPUU Riko | 68 |
122 | HERRING Louis | 63 |
131 | LINSER Ivan | 56.7 |
134 | HERNANDEZ Jan | 54 |
145 | MEIRHAEGHE Bo | 67 |
156 | HEWES Alex | 69 |