Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -17.9 * weight + 2011
This means that on average for every extra kilogram weight a rider loses -17.9 positions in the result.
Baldato
2
60 kgMuseeuw
3
71 kgSciandri
4
75 kgPeeters
5
76 kgBerzin
990
64 kgBrochard
990
68 kgNoè
990
65 kgVandenbroucke
990
67 kgBugno
990
68 kgHervé
990
62 kgTotschnig
990
62 kgGoubert
990
62 kgSeigneur
990
71 kgCipollini
990
77 kgGontchenkov
990
74 kgAbduzhaparov
990
72 kgLombardi
990
73 kgBelli
990
64 kgSpruch
990
68 kgBertolini
990
63 kg
2
60 kgMuseeuw
3
71 kgSciandri
4
75 kgPeeters
5
76 kgBerzin
990
64 kgBrochard
990
68 kgNoè
990
65 kgVandenbroucke
990
67 kgBugno
990
68 kgHervé
990
62 kgTotschnig
990
62 kgGoubert
990
62 kgSeigneur
990
71 kgCipollini
990
77 kgGontchenkov
990
74 kgAbduzhaparov
990
72 kgLombardi
990
73 kgBelli
990
64 kgSpruch
990
68 kgBertolini
990
63 kg
Weight (KG) →
Result →
77
60
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | BALDATO Fabio | 60 |
3 | MUSEEUW Johan | 71 |
4 | SCIANDRI Maximilian | 75 |
5 | PEETERS Wilfried | 76 |
990 | BERZIN Evgeni | 64 |
990 | BROCHARD Laurent | 68 |
990 | NOÈ Andrea | 65 |
990 | VANDENBROUCKE Frank | 67 |
990 | BUGNO Gianni | 68 |
990 | HERVÉ Pascal | 62 |
990 | TOTSCHNIG Georg | 62 |
990 | GOUBERT Stéphane | 62 |
990 | SEIGNEUR Eddy | 71 |
990 | CIPOLLINI Mario | 77 |
990 | GONTCHENKOV Alexander | 74 |
990 | ABDUZHAPAROV Djamolidine | 72 |
990 | LOMBARDI Giovanni | 73 |
990 | BELLI Wladimir | 64 |
990 | SPRUCH Zbigniew | 68 |
990 | BERTOLINI Alessandro | 63 |