Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 996
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
Cipollini
1
77 kgBaldato
3
60 kgAbduzhaparov
4
72 kgMichaelsen
5
79 kgBugno
990
68 kgPetito
990
78 kgRebellin
990
63 kgKonyshev
990
77 kgMerckx
990
77 kgNoè
990
65 kgBrochard
990
68 kgSerpellini
990
75 kgVirenque
990
65 kgSpruch
990
68 kgPlanckaert
990
70 kgZanini
990
80 kgPeeters
990
76 kgFondriest
990
70 kgMuseeuw
990
71 kg
1
77 kgBaldato
3
60 kgAbduzhaparov
4
72 kgMichaelsen
5
79 kgBugno
990
68 kgPetito
990
78 kgRebellin
990
63 kgKonyshev
990
77 kgMerckx
990
77 kgNoè
990
65 kgBrochard
990
68 kgSerpellini
990
75 kgVirenque
990
65 kgSpruch
990
68 kgPlanckaert
990
70 kgZanini
990
80 kgPeeters
990
76 kgFondriest
990
70 kgMuseeuw
990
71 kg
Weight (KG) →
Result →
80
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | CIPOLLINI Mario | 77 |
3 | BALDATO Fabio | 60 |
4 | ABDUZHAPAROV Djamolidine | 72 |
5 | MICHAELSEN Lars | 79 |
990 | BUGNO Gianni | 68 |
990 | PETITO Roberto | 78 |
990 | REBELLIN Davide | 63 |
990 | KONYSHEV Dmitry | 77 |
990 | MERCKX Axel | 77 |
990 | NOÈ Andrea | 65 |
990 | BROCHARD Laurent | 68 |
990 | SERPELLINI Marco | 75 |
990 | VIRENQUE Richard | 65 |
990 | SPRUCH Zbigniew | 68 |
990 | PLANCKAERT Jo | 70 |
990 | ZANINI Stefano | 80 |
990 | PEETERS Wilfried | 76 |
990 | FONDRIEST Maurizio | 70 |
990 | MUSEEUW Johan | 71 |