Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -9.2 * weight + 1262
This means that on average for every extra kilogram weight a rider loses -9.2 positions in the result.
Cipollini
1
77 kgPlanckaert
2
70 kgAbduzhaparov
3
72 kgZanini
5
80 kgPeeters
8
76 kgBaldato
9
60 kgSpruch
10
68 kgBugno
990
68 kgPetito
990
78 kgRebellin
990
63 kgKonyshev
990
77 kgMerckx
990
77 kgNoè
990
65 kgBrochard
990
68 kgSerpellini
990
75 kgVirenque
990
65 kgFondriest
990
70 kgMuseeuw
990
71 kg
1
77 kgPlanckaert
2
70 kgAbduzhaparov
3
72 kgZanini
5
80 kgPeeters
8
76 kgBaldato
9
60 kgSpruch
10
68 kgBugno
990
68 kgPetito
990
78 kgRebellin
990
63 kgKonyshev
990
77 kgMerckx
990
77 kgNoè
990
65 kgBrochard
990
68 kgSerpellini
990
75 kgVirenque
990
65 kgFondriest
990
70 kgMuseeuw
990
71 kg
Weight (KG) →
Result →
80
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | CIPOLLINI Mario | 77 |
2 | PLANCKAERT Jo | 70 |
3 | ABDUZHAPAROV Djamolidine | 72 |
5 | ZANINI Stefano | 80 |
8 | PEETERS Wilfried | 76 |
9 | BALDATO Fabio | 60 |
10 | SPRUCH Zbigniew | 68 |
990 | BUGNO Gianni | 68 |
990 | PETITO Roberto | 78 |
990 | REBELLIN Davide | 63 |
990 | KONYSHEV Dmitry | 77 |
990 | MERCKX Axel | 77 |
990 | NOÈ Andrea | 65 |
990 | BROCHARD Laurent | 68 |
990 | SERPELLINI Marco | 75 |
990 | VIRENQUE Richard | 65 |
990 | FONDRIEST Maurizio | 70 |
990 | MUSEEUW Johan | 71 |