Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 46
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
van Empel
2
64 kgSchönberger
3
64 kgFortunato
4
57 kgRinaldi
5
65 kgBarać
6
73 kgZandomeneghi
8
61 kgFerrari
10
64 kgSefa
12
72 kgBertone
14
64 kgZambelli
20
70 kgBevilacqua
21
75 kgVan Nuffelen
29
64 kgVelia
37
74 kgSartori
42
68 kgZhupa
44
78 kgBaldo
52
64 kgDubois
57
65 kg
2
64 kgSchönberger
3
64 kgFortunato
4
57 kgRinaldi
5
65 kgBarać
6
73 kgZandomeneghi
8
61 kgFerrari
10
64 kgSefa
12
72 kgBertone
14
64 kgZambelli
20
70 kgBevilacqua
21
75 kgVan Nuffelen
29
64 kgVelia
37
74 kgSartori
42
68 kgZhupa
44
78 kgBaldo
52
64 kgDubois
57
65 kg
Weight (KG) →
Result →
78
57
2
57
# | Rider | Weight (KG) |
---|---|---|
2 | VAN EMPEL Etienne | 64 |
3 | SCHÖNBERGER Sebastian | 64 |
4 | FORTUNATO Lorenzo | 57 |
5 | RINALDI Nicholas | 65 |
6 | BARAĆ Antonio | 73 |
8 | ZANDOMENEGHI Simone | 61 |
10 | FERRARI Andrea | 64 |
12 | SEFA Ylber | 72 |
14 | BERTONE Filippo | 64 |
20 | ZAMBELLI Samuele | 70 |
21 | BEVILACQUA Simone | 75 |
29 | VAN NUFFELEN Glen | 64 |
37 | VELIA Olsian | 74 |
42 | SARTORI Mirco | 68 |
44 | ZHUPA Eugert | 78 |
52 | BALDO Mattia | 64 |
57 | DUBOIS Foeke | 65 |