Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 143
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Zhupa
1
78 kgSartori
2
68 kgBertone
3
64 kgFerrari
6
64 kgBarać
10
73 kgSefa
11
72 kgZambelli
14
70 kgVelia
17
74 kgDubois
30
65 kgSchönberger
38
64 kgvan Empel
39
64 kgBevilacqua
40
75 kgRinaldi
42
65 kgVan Nuffelen
43
64 kgFortunato
45
57 kgZandomeneghi
46
61 kgBaldo
51
64 kg
1
78 kgSartori
2
68 kgBertone
3
64 kgFerrari
6
64 kgBarać
10
73 kgSefa
11
72 kgZambelli
14
70 kgVelia
17
74 kgDubois
30
65 kgSchönberger
38
64 kgvan Empel
39
64 kgBevilacqua
40
75 kgRinaldi
42
65 kgVan Nuffelen
43
64 kgFortunato
45
57 kgZandomeneghi
46
61 kgBaldo
51
64 kg
Weight (KG) →
Result →
78
57
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | ZHUPA Eugert | 78 |
2 | SARTORI Mirco | 68 |
3 | BERTONE Filippo | 64 |
6 | FERRARI Andrea | 64 |
10 | BARAĆ Antonio | 73 |
11 | SEFA Ylber | 72 |
14 | ZAMBELLI Samuele | 70 |
17 | VELIA Olsian | 74 |
30 | DUBOIS Foeke | 65 |
38 | SCHÖNBERGER Sebastian | 64 |
39 | VAN EMPEL Etienne | 64 |
40 | BEVILACQUA Simone | 75 |
42 | RINALDI Nicholas | 65 |
43 | VAN NUFFELEN Glen | 64 |
45 | FORTUNATO Lorenzo | 57 |
46 | ZANDOMENEGHI Simone | 61 |
51 | BALDO Mattia | 64 |