Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 123
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Sefa
1
72 kgAsadov
2
77 kgBarać
3
73 kgĐurić
5
79 kgStravers
7
73 kgDuijvesteijn
8
73 kgKlisurić
9
70 kgAngelov
10
59 kgMikayilzade
12
66 kgRaileanu
17
63 kgȚvetcov
21
69 kgVelia
24
74 kgLumparov
25
75 kgKarić
35
78 kgAlizada
38
68 kgDubois
39
65 kgKolev
42
64 kgDivnić
50
64 kgGrigoras
52
68 kgHorvath
56
60 kg
1
72 kgAsadov
2
77 kgBarać
3
73 kgĐurić
5
79 kgStravers
7
73 kgDuijvesteijn
8
73 kgKlisurić
9
70 kgAngelov
10
59 kgMikayilzade
12
66 kgRaileanu
17
63 kgȚvetcov
21
69 kgVelia
24
74 kgLumparov
25
75 kgKarić
35
78 kgAlizada
38
68 kgDubois
39
65 kgKolev
42
64 kgDivnić
50
64 kgGrigoras
52
68 kgHorvath
56
60 kg
Weight (KG) →
Result →
79
59
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | SEFA Ylber | 72 |
2 | ASADOV Elchin | 77 |
3 | BARAĆ Antonio | 73 |
5 | ĐURIĆ Đorđe | 79 |
7 | STRAVERS Jarri | 73 |
8 | DUIJVESTEIJN Roy | 73 |
9 | KLISURIĆ Stevan | 70 |
10 | ANGELOV Lachezar | 59 |
12 | MIKAYILZADE Musa | 66 |
17 | RAILEANU Cristian | 63 |
21 | ȚVETCOV Serghei | 69 |
24 | VELIA Olsian | 74 |
25 | LUMPAROV Georgi | 75 |
35 | KARIĆ Vedad | 78 |
38 | ALIZADA Elgun | 68 |
39 | DUBOIS Foeke | 65 |
42 | KOLEV Yoan | 64 |
50 | DIVNIĆ Jovan | 64 |
52 | GRIGORAS Tudor-Justin | 68 |
56 | HORVATH Roland | 60 |