Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 124
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Sefa
1
72 kgRaileanu
2
63 kgĐurić
5
79 kgKarić
6
78 kgAsadov
7
77 kgMikayilzade
12
66 kgDuijvesteijn
13
73 kgBarać
17
73 kgAngelov
18
59 kgVelia
20
74 kgvan Schipstal
22
66 kgDivnić
23
64 kgKolev
28
64 kgDubois
30
65 kgLumparov
36
75 kgȚvetcov
40
69 kgStravers
46
73 kgAlizada
51
68 kgKlisurić
52
70 kgGrigoras
62
68 kgHorvath
64
60 kgBuzi
70
63 kg
1
72 kgRaileanu
2
63 kgĐurić
5
79 kgKarić
6
78 kgAsadov
7
77 kgMikayilzade
12
66 kgDuijvesteijn
13
73 kgBarać
17
73 kgAngelov
18
59 kgVelia
20
74 kgvan Schipstal
22
66 kgDivnić
23
64 kgKolev
28
64 kgDubois
30
65 kgLumparov
36
75 kgȚvetcov
40
69 kgStravers
46
73 kgAlizada
51
68 kgKlisurić
52
70 kgGrigoras
62
68 kgHorvath
64
60 kgBuzi
70
63 kg
Weight (KG) →
Result →
79
59
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | SEFA Ylber | 72 |
2 | RAILEANU Cristian | 63 |
5 | ĐURIĆ Đorđe | 79 |
6 | KARIĆ Vedad | 78 |
7 | ASADOV Elchin | 77 |
12 | MIKAYILZADE Musa | 66 |
13 | DUIJVESTEIJN Roy | 73 |
17 | BARAĆ Antonio | 73 |
18 | ANGELOV Lachezar | 59 |
20 | VELIA Olsian | 74 |
22 | VAN SCHIPSTAL Guus | 66 |
23 | DIVNIĆ Jovan | 64 |
28 | KOLEV Yoan | 64 |
30 | DUBOIS Foeke | 65 |
36 | LUMPAROV Georgi | 75 |
40 | ȚVETCOV Serghei | 69 |
46 | STRAVERS Jarri | 73 |
51 | ALIZADA Elgun | 68 |
52 | KLISURIĆ Stevan | 70 |
62 | GRIGORAS Tudor-Justin | 68 |
64 | HORVATH Roland | 60 |
70 | BUZI Geri | 63 |