Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 94
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
van Schipstal
1
66 kgDivnić
3
64 kgĐurić
4
79 kgSefa
5
72 kgAsadov
10
77 kgDuijvesteijn
13
73 kgKarić
16
78 kgRaileanu
17
63 kgMikayilzade
18
66 kgLumparov
22
75 kgKolev
28
64 kgDubois
31
65 kgAlizada
34
68 kgGrigoras
35
68 kgHorvath
37
60 kgStravers
40
73 kgKlisurić
43
70 kgȚvetcov
45
69 kgBarać
46
73 kgAngelov
51
59 kgVelia
54
74 kgBuzi
68
63 kg
1
66 kgDivnić
3
64 kgĐurić
4
79 kgSefa
5
72 kgAsadov
10
77 kgDuijvesteijn
13
73 kgKarić
16
78 kgRaileanu
17
63 kgMikayilzade
18
66 kgLumparov
22
75 kgKolev
28
64 kgDubois
31
65 kgAlizada
34
68 kgGrigoras
35
68 kgHorvath
37
60 kgStravers
40
73 kgKlisurić
43
70 kgȚvetcov
45
69 kgBarać
46
73 kgAngelov
51
59 kgVelia
54
74 kgBuzi
68
63 kg
Weight (KG) →
Result →
79
59
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | VAN SCHIPSTAL Guus | 66 |
3 | DIVNIĆ Jovan | 64 |
4 | ĐURIĆ Đorđe | 79 |
5 | SEFA Ylber | 72 |
10 | ASADOV Elchin | 77 |
13 | DUIJVESTEIJN Roy | 73 |
16 | KARIĆ Vedad | 78 |
17 | RAILEANU Cristian | 63 |
18 | MIKAYILZADE Musa | 66 |
22 | LUMPAROV Georgi | 75 |
28 | KOLEV Yoan | 64 |
31 | DUBOIS Foeke | 65 |
34 | ALIZADA Elgun | 68 |
35 | GRIGORAS Tudor-Justin | 68 |
37 | HORVATH Roland | 60 |
40 | STRAVERS Jarri | 73 |
43 | KLISURIĆ Stevan | 70 |
45 | ȚVETCOV Serghei | 69 |
46 | BARAĆ Antonio | 73 |
51 | ANGELOV Lachezar | 59 |
54 | VELIA Olsian | 74 |
68 | BUZI Geri | 63 |