Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 108
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Đurić
2
79 kgSefa
4
72 kgAsadov
6
77 kgDivnić
7
64 kgvan Schipstal
8
66 kgKarić
11
78 kgLumparov
12
75 kgMikayilzade
17
66 kgDuijvesteijn
18
73 kgStravers
19
73 kgDubois
21
65 kgRaileanu
23
63 kgAngelov
26
59 kgAlizada
27
68 kgBarać
30
73 kgKolev
33
64 kgȚvetcov
40
69 kgGrigoras
41
68 kgVelia
44
74 kgKlisurić
48
70 kgBuzi
51
63 kgHorvath
53
60 kg
2
79 kgSefa
4
72 kgAsadov
6
77 kgDivnić
7
64 kgvan Schipstal
8
66 kgKarić
11
78 kgLumparov
12
75 kgMikayilzade
17
66 kgDuijvesteijn
18
73 kgStravers
19
73 kgDubois
21
65 kgRaileanu
23
63 kgAngelov
26
59 kgAlizada
27
68 kgBarać
30
73 kgKolev
33
64 kgȚvetcov
40
69 kgGrigoras
41
68 kgVelia
44
74 kgKlisurić
48
70 kgBuzi
51
63 kgHorvath
53
60 kg
Weight (KG) →
Result →
79
59
2
53
# | Rider | Weight (KG) |
---|---|---|
2 | ĐURIĆ Đorđe | 79 |
4 | SEFA Ylber | 72 |
6 | ASADOV Elchin | 77 |
7 | DIVNIĆ Jovan | 64 |
8 | VAN SCHIPSTAL Guus | 66 |
11 | KARIĆ Vedad | 78 |
12 | LUMPAROV Georgi | 75 |
17 | MIKAYILZADE Musa | 66 |
18 | DUIJVESTEIJN Roy | 73 |
19 | STRAVERS Jarri | 73 |
21 | DUBOIS Foeke | 65 |
23 | RAILEANU Cristian | 63 |
26 | ANGELOV Lachezar | 59 |
27 | ALIZADA Elgun | 68 |
30 | BARAĆ Antonio | 73 |
33 | KOLEV Yoan | 64 |
40 | ȚVETCOV Serghei | 69 |
41 | GRIGORAS Tudor-Justin | 68 |
44 | VELIA Olsian | 74 |
48 | KLISURIĆ Stevan | 70 |
51 | BUZI Geri | 63 |
53 | HORVATH Roland | 60 |