Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Đurić
1
79 kgReemeijer
3
70 kgKarić
4
78 kgIlić
5
86 kgStolić
6
73 kgDivnić
7
64 kgKers
8
71 kgVelia
11
74 kgPetrov
12
66 kgGrömmel
13
70 kgStojnić
15
73 kgLacaille
16
58 kgErauw
20
69 kgDyankov
21
61 kgGrover
22
72 kgZegklis
23
57 kgJovanoski
25
68 kgPalashev
26
67 kgOchsenhofer
28
88 kg
1
79 kgReemeijer
3
70 kgKarić
4
78 kgIlić
5
86 kgStolić
6
73 kgDivnić
7
64 kgKers
8
71 kgVelia
11
74 kgPetrov
12
66 kgGrömmel
13
70 kgStojnić
15
73 kgLacaille
16
58 kgErauw
20
69 kgDyankov
21
61 kgGrover
22
72 kgZegklis
23
57 kgJovanoski
25
68 kgPalashev
26
67 kgOchsenhofer
28
88 kg
Weight (KG) →
Result →
88
57
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | ĐURIĆ Đorđe | 79 |
3 | REEMEIJER Niels | 70 |
4 | KARIĆ Vedad | 78 |
5 | ILIĆ Ognjen | 86 |
6 | STOLIĆ Mihajlo | 73 |
7 | DIVNIĆ Jovan | 64 |
8 | KERS Koos Jeroen | 71 |
11 | VELIA Olsian | 74 |
12 | PETROV Yordan | 66 |
13 | GRÖMMEL Rens | 70 |
15 | STOJNIĆ Veljko | 73 |
16 | LACAILLE Charlie | 58 |
20 | ERAUW Thiemo | 69 |
21 | DYANKOV Nikolay | 61 |
22 | GROVER Freddie | 72 |
23 | ZEGKLIS Nikolaos | 57 |
25 | JOVANOSKI Dimitar | 68 |
26 | PALASHEV Borislav | 67 |
28 | OCHSENHOFER Peter | 88 |