Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Slagter
1
57 kgGesink
2
70 kgDennis
4
72 kgBookwalter
5
70 kgDuchesne
6
75 kgDay
7
68 kgGeschke
8
64 kgȚvetcov
9
69 kgWegmann
11
60 kgMorabito
12
74 kgEvans
13
64 kgSagan
15
78 kgDillier
16
75 kgBeppu
17
69 kgMancebo
18
64 kgCaruso
19
67 kgBobridge
20
65 kgGretsch
23
69 kgvan Winden
24
70 kgJones
25
64 kgFriedemann
26
75 kgRoth
27
70 kgNovák
30
71 kgLewis
32
65 kg
1
57 kgGesink
2
70 kgDennis
4
72 kgBookwalter
5
70 kgDuchesne
6
75 kgDay
7
68 kgGeschke
8
64 kgȚvetcov
9
69 kgWegmann
11
60 kgMorabito
12
74 kgEvans
13
64 kgSagan
15
78 kgDillier
16
75 kgBeppu
17
69 kgMancebo
18
64 kgCaruso
19
67 kgBobridge
20
65 kgGretsch
23
69 kgvan Winden
24
70 kgJones
25
64 kgFriedemann
26
75 kgRoth
27
70 kgNovák
30
71 kgLewis
32
65 kg
Weight (KG) →
Result →
78
57
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | SLAGTER Tom-Jelte | 57 |
2 | GESINK Robert | 70 |
4 | DENNIS Rohan | 72 |
5 | BOOKWALTER Brent | 70 |
6 | DUCHESNE Antoine | 75 |
7 | DAY Benjamin | 68 |
8 | GESCHKE Simon | 64 |
9 | ȚVETCOV Serghei | 69 |
11 | WEGMANN Fabian | 60 |
12 | MORABITO Steve | 74 |
13 | EVANS Cadel | 64 |
15 | SAGAN Peter | 78 |
16 | DILLIER Silvan | 75 |
17 | BEPPU Fumiyuki | 69 |
18 | MANCEBO Francisco | 64 |
19 | CARUSO Damiano | 67 |
20 | BOBRIDGE Jack | 65 |
23 | GRETSCH Patrick | 69 |
24 | VAN WINDEN Dennis | 70 |
25 | JONES Carter | 64 |
26 | FRIEDEMANN Matthias | 75 |
27 | ROTH Ryan | 70 |
30 | NOVÁK Jakub | 71 |
32 | LEWIS Craig | 65 |