Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Sagan
1
78 kgDillier
3
75 kgȚvetcov
4
69 kgMezgec
5
72 kgHofland
6
71 kgKruopis
7
80 kgAnderson
8
66 kgGeschke
9
64 kgDennis
10
72 kgClarke
11
81 kgLudvigsson
13
76 kgBookwalter
14
70 kgWegmann
15
60 kgPowers
16
68 kgMcCabe
17
72 kgFriedemann
18
75 kgWeening
19
68 kgGoos
20
65 kgvan Winden
21
70 kgMurphy
22
81 kgGretsch
23
69 kg
1
78 kgDillier
3
75 kgȚvetcov
4
69 kgMezgec
5
72 kgHofland
6
71 kgKruopis
7
80 kgAnderson
8
66 kgGeschke
9
64 kgDennis
10
72 kgClarke
11
81 kgLudvigsson
13
76 kgBookwalter
14
70 kgWegmann
15
60 kgPowers
16
68 kgMcCabe
17
72 kgFriedemann
18
75 kgWeening
19
68 kgGoos
20
65 kgvan Winden
21
70 kgMurphy
22
81 kgGretsch
23
69 kg
Weight (KG) →
Result →
81
60
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
3 | DILLIER Silvan | 75 |
4 | ȚVETCOV Serghei | 69 |
5 | MEZGEC Luka | 72 |
6 | HOFLAND Moreno | 71 |
7 | KRUOPIS Aidis | 80 |
8 | ANDERSON Ryan | 66 |
9 | GESCHKE Simon | 64 |
10 | DENNIS Rohan | 72 |
11 | CLARKE Will | 81 |
13 | LUDVIGSSON Tobias | 76 |
14 | BOOKWALTER Brent | 70 |
15 | WEGMANN Fabian | 60 |
16 | POWERS Jeremy | 68 |
17 | MCCABE Travis | 72 |
18 | FRIEDEMANN Matthias | 75 |
19 | WEENING Pieter | 68 |
20 | GOOS Marc | 65 |
21 | VAN WINDEN Dennis | 70 |
22 | MURPHY John | 81 |
23 | GRETSCH Patrick | 69 |