Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Gesink
1
70 kgSlagter
2
57 kgDennis
3
72 kgBookwalter
4
70 kgȚvetcov
5
69 kgWegmann
6
60 kgMorabito
7
74 kgSagan
8
78 kgDillier
9
75 kgMancebo
10
64 kgCaruso
11
67 kgBobridge
12
65 kgGretsch
14
69 kgvan Winden
15
70 kgFriedemann
16
75 kgEvans
17
64 kgNovák
18
71 kgGeschke
19
64 kg
1
70 kgSlagter
2
57 kgDennis
3
72 kgBookwalter
4
70 kgȚvetcov
5
69 kgWegmann
6
60 kgMorabito
7
74 kgSagan
8
78 kgDillier
9
75 kgMancebo
10
64 kgCaruso
11
67 kgBobridge
12
65 kgGretsch
14
69 kgvan Winden
15
70 kgFriedemann
16
75 kgEvans
17
64 kgNovák
18
71 kgGeschke
19
64 kg
Weight (KG) →
Result →
78
57
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | GESINK Robert | 70 |
2 | SLAGTER Tom-Jelte | 57 |
3 | DENNIS Rohan | 72 |
4 | BOOKWALTER Brent | 70 |
5 | ȚVETCOV Serghei | 69 |
6 | WEGMANN Fabian | 60 |
7 | MORABITO Steve | 74 |
8 | SAGAN Peter | 78 |
9 | DILLIER Silvan | 75 |
10 | MANCEBO Francisco | 64 |
11 | CARUSO Damiano | 67 |
12 | BOBRIDGE Jack | 65 |
14 | GRETSCH Patrick | 69 |
15 | VAN WINDEN Dennis | 70 |
16 | FRIEDEMANN Matthias | 75 |
17 | EVANS Cadel | 64 |
18 | NOVÁK Jakub | 71 |
19 | GESCHKE Simon | 64 |