Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Slagter
1
57 kgGesink
2
70 kgDennis
3
72 kgBookwalter
4
70 kgDay
5
68 kgDuchesne
6
75 kgGeschke
7
64 kgȚvetcov
9
69 kgWegmann
10
60 kgMorabito
11
74 kgEvans
12
64 kgSagan
14
78 kgDillier
15
75 kgMancebo
16
64 kgCaruso
17
67 kgBobridge
18
65 kgGretsch
20
69 kgvan Winden
21
70 kgFriedemann
22
75 kgRoth
23
70 kgNovák
25
71 kg
1
57 kgGesink
2
70 kgDennis
3
72 kgBookwalter
4
70 kgDay
5
68 kgDuchesne
6
75 kgGeschke
7
64 kgȚvetcov
9
69 kgWegmann
10
60 kgMorabito
11
74 kgEvans
12
64 kgSagan
14
78 kgDillier
15
75 kgMancebo
16
64 kgCaruso
17
67 kgBobridge
18
65 kgGretsch
20
69 kgvan Winden
21
70 kgFriedemann
22
75 kgRoth
23
70 kgNovák
25
71 kg
Weight (KG) →
Result →
78
57
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | SLAGTER Tom-Jelte | 57 |
2 | GESINK Robert | 70 |
3 | DENNIS Rohan | 72 |
4 | BOOKWALTER Brent | 70 |
5 | DAY Benjamin | 68 |
6 | DUCHESNE Antoine | 75 |
7 | GESCHKE Simon | 64 |
9 | ȚVETCOV Serghei | 69 |
10 | WEGMANN Fabian | 60 |
11 | MORABITO Steve | 74 |
12 | EVANS Cadel | 64 |
14 | SAGAN Peter | 78 |
15 | DILLIER Silvan | 75 |
16 | MANCEBO Francisco | 64 |
17 | CARUSO Damiano | 67 |
18 | BOBRIDGE Jack | 65 |
20 | GRETSCH Patrick | 69 |
21 | VAN WINDEN Dennis | 70 |
22 | FRIEDEMANN Matthias | 75 |
23 | ROTH Ryan | 70 |
25 | NOVÁK Jakub | 71 |