Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Yates
1
58 kgHayman
3
78 kgBazzana
4
63.5 kgKruijswijk
5
63 kgWoods
6
62 kgSkujiņš
7
70 kgKing
8
68 kgGeschke
9
64 kgTanner
11
70 kgReijnen
12
63 kgGaimon
13
67 kgWurf
14
71 kgSalerno
15
64 kgImpey
16
72 kgBell
18
75 kgPreidler
19
68 kgMeier
21
61 kgCarlsen
22
68 kgKing
23
78 kgMannion
24
58 kg
1
58 kgHayman
3
78 kgBazzana
4
63.5 kgKruijswijk
5
63 kgWoods
6
62 kgSkujiņš
7
70 kgKing
8
68 kgGeschke
9
64 kgTanner
11
70 kgReijnen
12
63 kgGaimon
13
67 kgWurf
14
71 kgSalerno
15
64 kgImpey
16
72 kgBell
18
75 kgPreidler
19
68 kgMeier
21
61 kgCarlsen
22
68 kgKing
23
78 kgMannion
24
58 kg
Weight (KG) →
Result →
78
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | YATES Simon | 58 |
3 | HAYMAN Mathew | 78 |
4 | BAZZANA Alessandro | 63.5 |
5 | KRUIJSWIJK Steven | 63 |
6 | WOODS Michael | 62 |
7 | SKUJIŅŠ Toms | 70 |
8 | KING Ben | 68 |
9 | GESCHKE Simon | 64 |
11 | TANNER David | 70 |
12 | REIJNEN Kiel | 63 |
13 | GAIMON Phillip | 67 |
14 | WURF Cameron | 71 |
15 | SALERNO Cristiano | 64 |
16 | IMPEY Daryl | 72 |
18 | BELL Zach | 75 |
19 | PREIDLER Georg | 68 |
21 | MEIER Christian | 61 |
22 | CARLSEN Kirk | 68 |
23 | KING Edward | 78 |
24 | MANNION Gavin | 58 |