Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Navardauskas
1
79 kgZepuntke
2
76 kgAhlstrand
3
72 kgVanmarcke
4
77 kgAnderson
5
66 kgImpey
6
72 kgBos
7
77 kgSummerhill
8
70 kgHayman
9
78 kgHoward
10
72 kgȚvetcov
11
69 kgSmith
12
67 kgKruopis
14
80 kgKing
15
68 kgVon Hoff
16
70 kgMohorič
18
71 kgvan der Lijke
20
61 kgWegmann
22
60 kgOram
23
68 kgVan Hooydonck
24
78 kg
1
79 kgZepuntke
2
76 kgAhlstrand
3
72 kgVanmarcke
4
77 kgAnderson
5
66 kgImpey
6
72 kgBos
7
77 kgSummerhill
8
70 kgHayman
9
78 kgHoward
10
72 kgȚvetcov
11
69 kgSmith
12
67 kgKruopis
14
80 kgKing
15
68 kgVon Hoff
16
70 kgMohorič
18
71 kgvan der Lijke
20
61 kgWegmann
22
60 kgOram
23
68 kgVan Hooydonck
24
78 kg
Weight (KG) →
Result →
80
60
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | NAVARDAUSKAS Ramūnas | 79 |
2 | ZEPUNTKE Ruben | 76 |
3 | AHLSTRAND Jonas | 72 |
4 | VANMARCKE Sep | 77 |
5 | ANDERSON Ryan | 66 |
6 | IMPEY Daryl | 72 |
7 | BOS Theo | 77 |
8 | SUMMERHILL Daniel | 70 |
9 | HAYMAN Mathew | 78 |
10 | HOWARD Leigh | 72 |
11 | ȚVETCOV Serghei | 69 |
12 | SMITH Dion | 67 |
14 | KRUOPIS Aidis | 80 |
15 | KING Ben | 68 |
16 | VON HOFF Steele | 70 |
18 | MOHORIČ Matej | 71 |
20 | VAN DER LIJKE Nick | 61 |
22 | WEGMANN Fabian | 60 |
23 | ORAM James | 68 |
24 | VAN HOOYDONCK Nathan | 78 |