Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Navardauskas
1
79 kgZepuntke
2
76 kgBos
3
77 kgImpey
4
72 kgAhlstrand
5
72 kgVanmarcke
6
77 kgAnderson
7
66 kgSummerhill
8
70 kgHayman
9
78 kgHoward
10
72 kgVon Hoff
11
70 kgKocjan
12
72 kgKing
14
68 kgȚvetcov
15
69 kgSmith
16
67 kgKruopis
18
80 kgFörster
22
83 kgMohorič
23
71 kgvan der Lijke
25
61 kgWegmann
26
60 kgClarke
27
68 kgOram
28
68 kgVan Hooydonck
29
78 kg
1
79 kgZepuntke
2
76 kgBos
3
77 kgImpey
4
72 kgAhlstrand
5
72 kgVanmarcke
6
77 kgAnderson
7
66 kgSummerhill
8
70 kgHayman
9
78 kgHoward
10
72 kgVon Hoff
11
70 kgKocjan
12
72 kgKing
14
68 kgȚvetcov
15
69 kgSmith
16
67 kgKruopis
18
80 kgFörster
22
83 kgMohorič
23
71 kgvan der Lijke
25
61 kgWegmann
26
60 kgClarke
27
68 kgOram
28
68 kgVan Hooydonck
29
78 kg
Weight (KG) →
Result →
83
60
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | NAVARDAUSKAS Ramūnas | 79 |
2 | ZEPUNTKE Ruben | 76 |
3 | BOS Theo | 77 |
4 | IMPEY Daryl | 72 |
5 | AHLSTRAND Jonas | 72 |
6 | VANMARCKE Sep | 77 |
7 | ANDERSON Ryan | 66 |
8 | SUMMERHILL Daniel | 70 |
9 | HAYMAN Mathew | 78 |
10 | HOWARD Leigh | 72 |
11 | VON HOFF Steele | 70 |
12 | KOCJAN Jure | 72 |
14 | KING Ben | 68 |
15 | ȚVETCOV Serghei | 69 |
16 | SMITH Dion | 67 |
18 | KRUOPIS Aidis | 80 |
22 | FÖRSTER Robert | 83 |
23 | MOHORIČ Matej | 71 |
25 | VAN DER LIJKE Nick | 61 |
26 | WEGMANN Fabian | 60 |
27 | CLARKE Jonathan | 68 |
28 | ORAM James | 68 |
29 | VAN HOOYDONCK Nathan | 78 |