Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 19
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Perry
1
71 kgBenedetti
2
63 kgSkjerping
3
71 kgDidier
7
68 kgSkujiņš
8
70 kgSlagter
9
57 kgHuffman
10
71 kgMollema
11
64 kgBrown
12
65 kgYates
14
58 kgMurphy
15
67 kgCataford
16
70 kgSmith
17
67 kgMeier
18
61 kgDaniel
19
64 kgDurbridge
20
78 kgOram
21
68 kgMatthews
22
72 kgThwaites
23
71 kgRast
24
80 kgLagutin
25
68 kgHepburn
26
77 kgMouris
27
91 kg
1
71 kgBenedetti
2
63 kgSkjerping
3
71 kgDidier
7
68 kgSkujiņš
8
70 kgSlagter
9
57 kgHuffman
10
71 kgMollema
11
64 kgBrown
12
65 kgYates
14
58 kgMurphy
15
67 kgCataford
16
70 kgSmith
17
67 kgMeier
18
61 kgDaniel
19
64 kgDurbridge
20
78 kgOram
21
68 kgMatthews
22
72 kgThwaites
23
71 kgRast
24
80 kgLagutin
25
68 kgHepburn
26
77 kgMouris
27
91 kg
Weight (KG) →
Result →
91
57
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | PERRY Benjamin | 71 |
2 | BENEDETTI Cesare | 63 |
3 | SKJERPING Kristoffer | 71 |
7 | DIDIER Laurent | 68 |
8 | SKUJIŅŠ Toms | 70 |
9 | SLAGTER Tom-Jelte | 57 |
10 | HUFFMAN Evan | 71 |
11 | MOLLEMA Bauke | 64 |
12 | BROWN Nathan | 65 |
14 | YATES Adam | 58 |
15 | MURPHY Kyle | 67 |
16 | CATAFORD Alexander | 70 |
17 | SMITH Dion | 67 |
18 | MEIER Christian | 61 |
19 | DANIEL Gregory | 64 |
20 | DURBRIDGE Luke | 78 |
21 | ORAM James | 68 |
22 | MATTHEWS Michael | 72 |
23 | THWAITES Scott | 71 |
24 | RAST Grégory | 80 |
25 | LAGUTIN Sergey | 68 |
26 | HEPBURN Michael | 77 |
27 | MOURIS Jens | 91 |