Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Slagter
1
57 kgMatthews
2
72 kgMollema
3
64 kgArndt
4
77.5 kgBenedetti
5
63 kgYates
6
58 kgTsatevich
7
64 kgLagutin
8
68 kgMcCabe
9
72 kgWoods
10
62 kgVaubourzeix
11
70 kgBennett
12
73 kgSmith
13
67 kgHepburn
14
77 kgOram
15
68 kgBoivin
16
78 kgFormolo
17
62 kgOwen
18
67 kgŠpilak
19
68 kgHuffman
21
71 kgPerry
24
71 kg
1
57 kgMatthews
2
72 kgMollema
3
64 kgArndt
4
77.5 kgBenedetti
5
63 kgYates
6
58 kgTsatevich
7
64 kgLagutin
8
68 kgMcCabe
9
72 kgWoods
10
62 kgVaubourzeix
11
70 kgBennett
12
73 kgSmith
13
67 kgHepburn
14
77 kgOram
15
68 kgBoivin
16
78 kgFormolo
17
62 kgOwen
18
67 kgŠpilak
19
68 kgHuffman
21
71 kgPerry
24
71 kg
Weight (KG) →
Result →
78
57
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | SLAGTER Tom-Jelte | 57 |
2 | MATTHEWS Michael | 72 |
3 | MOLLEMA Bauke | 64 |
4 | ARNDT Nikias | 77.5 |
5 | BENEDETTI Cesare | 63 |
6 | YATES Adam | 58 |
7 | TSATEVICH Alexey | 64 |
8 | LAGUTIN Sergey | 68 |
9 | MCCABE Travis | 72 |
10 | WOODS Michael | 62 |
11 | VAUBOURZEIX Thomas | 70 |
12 | BENNETT Sam | 73 |
13 | SMITH Dion | 67 |
14 | HEPBURN Michael | 77 |
15 | ORAM James | 68 |
16 | BOIVIN Guillaume | 78 |
17 | FORMOLO Davide | 62 |
18 | OWEN Logan | 67 |
19 | ŠPILAK Simon | 68 |
21 | HUFFMAN Evan | 71 |
24 | PERRY Benjamin | 71 |