Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Huffman
2
71 kgHowes
4
61 kgWilliams
5
73 kgPutt
6
75 kgMancebo
7
64 kgSkjerping
8
71 kgMcCabe
10
72 kgMurphy
11
81 kgMollema
12
64 kgCataford
13
70 kgDisera
14
71 kgDuchesne
15
75 kgSkujiņš
18
70 kgRast
19
80 kgCastillo
22
72 kgZamparella
23
67 kgPerry
25
71 kgStetina
26
63 kg
2
71 kgHowes
4
61 kgWilliams
5
73 kgPutt
6
75 kgMancebo
7
64 kgSkjerping
8
71 kgMcCabe
10
72 kgMurphy
11
81 kgMollema
12
64 kgCataford
13
70 kgDisera
14
71 kgDuchesne
15
75 kgSkujiņš
18
70 kgRast
19
80 kgCastillo
22
72 kgZamparella
23
67 kgPerry
25
71 kgStetina
26
63 kg
Weight (KG) →
Result →
81
61
2
26
# | Rider | Weight (KG) |
---|---|---|
2 | HUFFMAN Evan | 71 |
4 | HOWES Alex | 61 |
5 | WILLIAMS Tyler | 73 |
6 | PUTT Tanner | 75 |
7 | MANCEBO Francisco | 64 |
8 | SKJERPING Kristoffer | 71 |
10 | MCCABE Travis | 72 |
11 | MURPHY John | 81 |
12 | MOLLEMA Bauke | 64 |
13 | CATAFORD Alexander | 70 |
14 | DISERA Peter | 71 |
15 | DUCHESNE Antoine | 75 |
18 | SKUJIŅŠ Toms | 70 |
19 | RAST Grégory | 80 |
22 | CASTILLO Ulises Alfredo | 72 |
23 | ZAMPARELLA Marco | 67 |
25 | PERRY Benjamin | 71 |
26 | STETINA Peter | 63 |