Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 107
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Arango
1
62 kgÖrken
2
69 kgAlmeida
3
63 kgBalykin
4
68 kgSevilla
5
62 kgChirico
6
58 kgZahiri
7
57 kgRavanelli
9
66 kgRamirez
12
69 kgVargas
13
69 kgVorganov
14
65 kgBazhkou
17
65 kgMihailov
18
68 kgKüçükbay
22
70 kgAkdilek
26
68 kgAndreev
42
63 kgSamli
46
75 kgCholakov
50
66 kgIvashkin
52
73 kgTiryaki
53
67 kg
1
62 kgÖrken
2
69 kgAlmeida
3
63 kgBalykin
4
68 kgSevilla
5
62 kgChirico
6
58 kgZahiri
7
57 kgRavanelli
9
66 kgRamirez
12
69 kgVargas
13
69 kgVorganov
14
65 kgBazhkou
17
65 kgMihailov
18
68 kgKüçükbay
22
70 kgAkdilek
26
68 kgAndreev
42
63 kgSamli
46
75 kgCholakov
50
66 kgIvashkin
52
73 kgTiryaki
53
67 kg
Weight (KG) →
Result →
75
57
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | ARANGO Juan Esteban | 62 |
2 | ÖRKEN Ahmet | 69 |
3 | ALMEIDA João | 63 |
4 | BALYKIN Ivan | 68 |
5 | SEVILLA Óscar | 62 |
6 | CHIRICO Luca | 58 |
7 | ZAHIRI Abderrahim | 57 |
9 | RAVANELLI Simone | 66 |
12 | RAMIREZ Brayan Steven | 69 |
13 | VARGAS Walter | 69 |
14 | VORGANOV Eduard | 65 |
17 | BAZHKOU Stanislau | 65 |
18 | MIHAILOV Mihail | 68 |
22 | KÜÇÜKBAY Kemal | 70 |
26 | AKDILEK Ahmet | 68 |
42 | ANDREEV Yordan | 63 |
46 | SAMLI Feritcan | 75 |
50 | CHOLAKOV Stanimir | 66 |
52 | IVASHKIN Anton | 73 |
53 | TIRYAKI Oguzhan | 67 |