Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
van der Kooij
1
70 kgJans
2
68 kgLonardi
3
70 kgFouché
4
71 kgRekita
5
70 kgvan der Poel
6
75 kgLópez
7
60 kgDe Bondt
8
73 kgRajović
9
74 kgPlaza
10
77 kgSamoilau
11
77 kgO'Loughlin
13
72 kgMinali
14
74 kgCarstensen
15
69 kgValter
16
65 kgOldani
17
65 kgKrieger
18
71 kgHorvat
20
70 kg
1
70 kgJans
2
68 kgLonardi
3
70 kgFouché
4
71 kgRekita
5
70 kgvan der Poel
6
75 kgLópez
7
60 kgDe Bondt
8
73 kgRajović
9
74 kgPlaza
10
77 kgSamoilau
11
77 kgO'Loughlin
13
72 kgMinali
14
74 kgCarstensen
15
69 kgValter
16
65 kgOldani
17
65 kgKrieger
18
71 kgHorvat
20
70 kg
Weight (KG) →
Result →
77
60
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER KOOIJ Bas | 70 |
2 | JANS Roy | 68 |
3 | LONARDI Giovanni | 70 |
4 | FOUCHÉ James | 71 |
5 | REKITA Szymon | 70 |
6 | VAN DER POEL Mathieu | 75 |
7 | LÓPEZ Juan Pedro | 60 |
8 | DE BONDT Dries | 73 |
9 | RAJOVIĆ Dušan | 74 |
10 | PLAZA Rubén | 77 |
11 | SAMOILAU Branislau | 77 |
13 | O'LOUGHLIN Michael | 72 |
14 | MINALI Riccardo | 74 |
15 | CARSTENSEN Lucas | 69 |
16 | VALTER Attila | 65 |
17 | OLDANI Stefano | 65 |
18 | KRIEGER Alexander | 71 |
20 | HORVAT Žiga | 70 |