Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Van Rooy
1
70 kgZoidl
2
63 kgLonardi
3
70 kgRäim
4
69 kgVermeersch
5
68 kgBadilatti
6
62 kgKump
7
68 kgPer
8
81 kgButs
9
68 kgTaminiaux
11
74 kgStedman
12
54 kgFancellu
13
62 kgZurlo
14
70 kgHaller
15
68 kgDe Poorter
16
68 kgTulett
18
56 kgKierner
19
79 kgTownsend
20
73 kgFortin
21
78 kg
1
70 kgZoidl
2
63 kgLonardi
3
70 kgRäim
4
69 kgVermeersch
5
68 kgBadilatti
6
62 kgKump
7
68 kgPer
8
81 kgButs
9
68 kgTaminiaux
11
74 kgStedman
12
54 kgFancellu
13
62 kgZurlo
14
70 kgHaller
15
68 kgDe Poorter
16
68 kgTulett
18
56 kgKierner
19
79 kgTownsend
20
73 kgFortin
21
78 kg
Weight (KG) →
Result →
81
54
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | VAN ROOY Kenneth | 70 |
2 | ZOIDL Riccardo | 63 |
3 | LONARDI Giovanni | 70 |
4 | RÄIM Mihkel | 69 |
5 | VERMEERSCH Gianni | 68 |
6 | BADILATTI Matteo | 62 |
7 | KUMP Marko | 68 |
8 | PER David | 81 |
9 | BUTS Vitaliy | 68 |
11 | TAMINIAUX Lionel | 74 |
12 | STEDMAN Maximilian | 54 |
13 | FANCELLU Alessandro | 62 |
14 | ZURLO Federico | 70 |
15 | HALLER Patrick | 68 |
16 | DE POORTER Maxime | 68 |
18 | TULETT Ben | 56 |
19 | KIERNER Florian | 79 |
20 | TOWNSEND Rory | 73 |
21 | FORTIN Filippo | 78 |